-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathqa_system.py
337 lines (293 loc) · 15.7 KB
/
qa_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import os
import sys
import numpy as np
import time
import logging
import signal
import json
from tabulate import tabulate
import tensorflow as tf
import config as conf
from utils import humanize_time, evaluate, convert_tokens
class QASystem(object):
def __init__(self, model, outdir, timestamp, num_batches, inits,
iterators, logger_name='phrase_level_qa', **kwargs):
self.kwargs = kwargs
self.timestamp = timestamp
self.out_dir = outdir
self.optimiser = kwargs['optimiser']
self.summaries = kwargs['summaries']
self.batch_size = kwargs['batch_size']
self.num_epochs = kwargs['num_epochs']
self.evaluate_every = kwargs['evaluate_every']
self.data_dir = kwargs['data_dir']
self.inits = inits
self.iterators = iterators
self.num_batches = num_batches
self.model = model
self.logger = logging.getLogger(logger_name + '.qa_system')
self.train_summary_writer = None
self.dev_summary_writer = None
self.best_em_score = None
self.best_em_score_start = None
self.best_em_score_end = None
self.best_f1 = None
self.best_loss = None
self.train_metrics = None
with tf.variable_scope("QA_System"):
self.model.setup_model()
self.setup_train_op()
self.saver = tf.train.Saver(tf.global_variables())
if self.summaries:
self.setup_saver()
def setup_train_op(self):
# Define Training procedure
self.global_step = tf.Variable(0, name="global_step", trainable=False)
self.learning_rate = tf.get_variable("lr", shape=[], dtype=tf.float32, trainable=False)
if self.optimiser == 'Adam':
optimizer = tf.train.AdamOptimizer(
self.learning_rate, beta1=0.8, beta2=0.999, epsilon=1e-7)
elif self.optimiser == 'AdaDelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate=self.learning_rate,
rho=0.95,
epsilon=1e-6)
elif self.optimiser == 'SGD':
optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
else:
self.logger.error("optimiser is not implemented")
NotImplementedError("optimiser is not implemented")
self.logger.info("defined classifier object")
vars = tf.trainable_variables()
self.grads_and_vars = optimizer.compute_gradients(self.model.loss, var_list=vars)
grads, vars = zip(*self.grads_and_vars)
capped_grads, _ = tf.clip_by_global_norm(grads, 5.)
self.tr_op_set = optimizer.apply_gradients(zip(capped_grads, vars),
global_step=self.global_step, name='tr_op_set')
tf.add_to_collection("optimizer", self.tr_op_set)
self.logger.info("defined training_ops")
self.init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
def setup_saver(self):
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in self.grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar(
"{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
self.grad_summaries_merged = tf.summary.merge(grad_summaries)
self.logger.info("defined gradient summaries")
# Train Summaries
self.train_summary_dir = os.path.join(self.out_dir, "summaries", "train")
self.logger.info("defined train summaries")
# Dev summaries
self.dev_summary_dir = os.path.join(self.out_dir, "summaries", "dev")
self.logger.info("defined dev summaries")
def save_configs(self, session, timestamp):
# save config file
confOut = os.path.join(self.out_dir, "config_" + timestamp + ".txt")
if not os.path.isfile(confOut):
conf.write_config_to_file(confOut)
self.logger.info("config file saved to {}".format(confOut))
graph_def = tf.get_default_graph().as_graph_def()
graphpb_txt = str(graph_def)
graphOut = os.path.join(self.checkpoint_dir, "graphpb.txt")
with open(graphOut, 'w') as f:
f.write(graphpb_txt)
if self.summaries:
self.train_summary_writer = tf.summary.FileWriter(self.train_summary_dir, session.graph)
self.dev_summary_writer = tf.summary.FileWriter(self.dev_summary_dir, session.graph)
def init_model(self, sess):
sess.run(self.init)
self.checkpoint_dir = os.path.abspath(os.path.join(self.out_dir, "checkpoints"))
self.checkpoint_prefix = os.path.join(self.checkpoint_dir, "model")
if os.path.exists(self.checkpoint_dir):
ckpt = self.kwargs['checkpoint']
checkpoint_file = tf.train.latest_checkpoint(self.checkpoint_dir)
if ckpt != '':
checkpoint_file = checkpoint_file.rsplit('-', 1)[0] + "-" + ckpt
self.logger.info("init model from checkpoint file {}".format(checkpoint_file))
self.epoch_start = int(checkpoint_file.rsplit('-', 1)[-1]) + 1
self.saver.restore(sess, checkpoint_file)
self.logger.info("starting epoch: {}".format(self.epoch_start))
else:
self.epoch_start = 0
os.makedirs(self.checkpoint_dir)
self.logger.info("create model with random parameters")
def to_saved_model(self, session, version):
export_dir = os.path.join(self.out_dir, 'saved_model/' + str(version))
inputs = {'char_ids': self.model.question_char_ids,
'ids': self.model.question_ids}
outputs = {'text_encoding': self.model.question}
tf.saved_model.simple_save(
session,
export_dir,
inputs,
outputs
)
def train_batch(self, hdl, sess, tr_op_set, global_step):
feed_dict = {self.model.is_train: True, self.model.handle: hdl}
if self.summaries:
_, step, loss, logits, ans, grad_sums = sess.run(
[tr_op_set, global_step, self.model.loss, self.model.logits,
self.model.labels, self.grad_summaries_merged],
feed_dict)
else:
_, step, loss, logits, ans, l_start, l_end = sess.run(
[tr_op_set, global_step, self.model.loss, self.model.logits,
self.model.labels, self.model.labels_start, self.model.labels_end],
feed_dict)
grad_sums = None
if np.isnan(loss) or np.isinf(loss):
self.logger.error("answers: {}".format(ans.shape))
self.logger.error("as: {} ae: {}".format(np.argmax(ans[:, 0, :], axis=1),
np.argmax(ans[:, 1, :], axis=1)))
self.logger.error("logits: {}".format(logits[0].shape))
return loss, step, grad_sums
def evaluate_batch(self, epoch, num_batches, eval_file, sess, data_type, str_handle):
answer_dict = {}
remapped_dict = {}
losses = []
tStart = time.time()
for nb in range(1, num_batches + 1):
if self.summaries:
qa_id, loss, yp1, yp2, grad_sums = sess.run(
[self.model.qa_ids, self.model.loss, self.model.yp1, self.model.yp2,
self.grad_summaries_merged],
feed_dict={self.model.handle: str_handle, self.model.is_train: False})
else:
qa_id, loss, yp1, yp2 = sess.run(
[self.model.qa_ids, self.model.loss, self.model.yp1, self.model.yp2],
feed_dict={self.model.handle: str_handle, self.model.is_train: False})
grad_sums = None
answer_dict_, remapped_dict_ = convert_tokens(
eval_file, qa_id.tolist(), yp1.tolist(), yp2.tolist())
answer_dict.update(answer_dict_)
remapped_dict.update(remapped_dict_)
losses.append(loss)
running_time = time.time() - tStart
rt = humanize_time(running_time / float(nb + 1) * num_batches - running_time)
print('Epoch {0:d} {1:s}: {2:d}/{3:d} batches; ETA: {4:s}'.format(
epoch+1+self.epoch_start, data_type, nb, num_batches, rt), end='\r')
if data_type == 'test':
with open(os.path.join(self.out_dir, 'answer.json'), "w") as fh:
json.dump(remapped_dict, fh)
loss = np.mean(losses)
metrics = evaluate(eval_file, answer_dict)
metrics["loss"] = loss
loss_sum = tf.Summary(value=[tf.Summary.Value(
tag="{}/loss".format(data_type), simple_value=metrics["loss"]), ])
f1_sum = tf.Summary(value=[tf.Summary.Value(
tag="{}/f1".format(data_type), simple_value=metrics["f1"]), ])
em_sum = tf.Summary(value=[tf.Summary.Value(
tag="{}/em".format(data_type), simple_value=metrics["exact_match"]), ])
return metrics, [loss_sum, f1_sum, em_sum, grad_sums]
def train(self, session, train_eval, dev_eval):
signal.signal(signal.SIGINT, self.signal_handler)
self.save_configs(session, self.timestamp)
train_handle = session.run(self.iterators[0].string_handle())
dev_handle = session.run(self.iterators[1].string_handle())
self.best_loss = 10e10
self.best_em_score = 0.
self.best_f1 = 0.
patience = 0
lr = self.kwargs['learning_rate']
session.run(tf.assign(self.learning_rate, tf.constant(lr, dtype=tf.float32)))
session.run(self.inits[0])
session.run(self.inits[1])
for e in range(self.num_epochs):
tStart = time.time()
for nb in range(self.num_batches[0]):
loss, step, grad_sum = self.train_batch(
train_handle, session, self.tr_op_set, self.global_step)
if self.summaries:
loss_sum = tf.Summary(value=[tf.Summary.Value(
tag="model/loss", simple_value=loss), ])
self.train_summary_writer.add_summary(loss_sum)
self.train_summary_writer.add_summary(grad_sum)
running_time = time.time() - tStart
rt = humanize_time(
running_time / float(nb + 1) * self.num_batches[0] - running_time)
print('Epoch {0:d} TRAIN: {1:d}/{2:d} batches; ETA: {3:s} - train_loss: {4:.4f}'.format(
e+1+self.epoch_start, nb, self.num_batches[0], rt, np.round(loss, 4)), end='\r')
self.train_metrics, summs = self.evaluate_batch(
e, self.num_batches[1], train_eval, session, "train", train_handle)
running_time = time.time() - tStart
self.logger.info(
"TRAIN epoch {0:d}: loss: {1:.4f}, em_score: {2:.4f}, em_score_start: {3:.4f}, "
"em_score_end: {4:.4f}, f1_score: {5:.4f}, running_time: {6:s}".format(
e+1+self.epoch_start, self.train_metrics['loss'], self.train_metrics['exact_match'],
self.train_metrics['em_start'], self.train_metrics['em_end'],
self.train_metrics['f1'], humanize_time(running_time)))
# =========== evaluating =========== #
if e % self.evaluate_every == 0:
tStart = time.time()
dev_metrics, summs = self.evaluate_batch(
e, self.num_batches[1], dev_eval, session, "dev", dev_handle)
running_time = time.time() - tStart
self.logger.info("DEV epoch {0:d}: em_score: {1:.4f}, em_score_start: {2:.4f}, "
"em_score_end: {3:.4f}, f1_score: {4:.4f}, loss: {5:.4f} running_time: {6:s}".format(
e+1+self.epoch_start, dev_metrics["exact_match"], dev_metrics["em_start"],
dev_metrics["em_end"], dev_metrics["f1"], dev_metrics["loss"],
humanize_time(running_time)))
if (dev_metrics["exact_match"] >= self.best_em_score) or\
(dev_metrics["f1"] > self.best_f1):
self.best_loss = dev_metrics["loss"]
self.best_em_score = dev_metrics["exact_match"]
self.best_em_score_start = dev_metrics["em_start"]
self.best_em_score_end = dev_metrics["em_end"]
self.best_f1 = dev_metrics["f1"]
self.saver.save(
session, self.checkpoint_prefix, global_step=e+self.epoch_start)
tf.train.write_graph(session.graph.as_graph_def(), self.checkpoint_prefix,
"graph" + str(e+self.epoch_start) + ".pb", as_text=False)
self.logger.info(
"Saved model {0:d} with em_score={1:.4f} checkpoint to {2:s}".format(
e+self.epoch_start, self.best_em_score, self.checkpoint_prefix))
patience = 0
else:
patience += 1
if patience >= self.kwargs['patience']:
lr /= 2.
session.run(tf.assign(
self.learning_rate, tf.constant(lr, dtype=tf.float32)))
self.logger.info("learning rate reduced to {}".format(lr))
patience = 0
if lr < 1e-6:
self.logger.info("learning rate is below 1e-6; stopping")
break
self.save_results(
[self.best_em_score, self.best_em_score_start, self.best_em_score_end, self.best_f1],
[self.train_metrics["loss"], self.train_metrics["exact_match"],
self.train_metrics["em_start"], self.train_metrics["em_end"],
self.train_metrics["f1"]])
def test(self, session, test_eval):
self.logger.info("testing started")
test_handle = session.run(self.iterators[0].string_handle())
tStart = time.time()
session.run(self.inits[0])
test_metrics, _ = self.evaluate_batch(
0, self.num_batches[0], test_eval, session, "test", test_handle)
running_time = time.time() - tStart
self.logger.info(
"TEST: em_score: {0:.4f}, em_score_start: {1:.4f}, "
"em_score_end: {2:.4f}, f1_score: {3:.4f}, loss: {4:.4f} running_time: {5:s}".format(
test_metrics["exact_match"], test_metrics["em_start"],
test_metrics["em_end"], test_metrics["f1"], test_metrics["loss"],
humanize_time(running_time)))
def save_results(self, dev_res, train_res):
with open(os.path.join(self.out_dir, 'test_results.txt'), 'w') as f:
f.write(tabulate(
[(self.model.model_name, dev_res[0], dev_res[1], dev_res[2], dev_res[3],
train_res[0], train_res[1], train_res[2], train_res[3], train_res[4])],
headers=('model', 'em_score', 'em_score_start', 'em_score_end', 'f1',
'train_loss', 'train_em', 'train_em_start', 'train_em_end', 'train_f1')))
def signal_handler(self, signal, frame):
self.logger.info("exiting program")
self.save_results(
[self.best_em_score, self.best_em_score_start, self.best_em_score_end, self.best_f1],
[self.train_metrics["loss"], self.train_metrics["exact_match"],
self.train_metrics["em_start"], self.train_metrics["em_end"],
self.train_metrics["f1"]])
sys.exit()