-
Notifications
You must be signed in to change notification settings - Fork 71
/
test_net.py
executable file
·198 lines (157 loc) · 6.53 KB
/
test_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from detectron2.config import get_cfg
from detectron2.modeling import build_backbone
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.structures import ImageList, Instances, BitMasks
from detectron2.engine import default_argument_parser, default_setup
from detectron2.data import build_detection_test_loader
from detectron2.evaluation import COCOEvaluator, print_csv_format
sys.path.append(".")
from sparseinst import build_sparse_inst_encoder, build_sparse_inst_decoder, add_sparse_inst_config
from sparseinst import COCOMaskEvaluator
device = torch.device('cuda:0')
dtype = torch.float32
__all__ = ["SparseInst"]
pixel_mean = torch.Tensor([123.675, 116.280, 103.530]).to(device).view(3, 1, 1)
pixel_std = torch.Tensor([58.395, 57.120, 57.375]).to(device).view(3, 1, 1)
@torch.jit.script
def normalizer(x, mean, std): return (x - mean) / std
def synchronize():
torch.cuda.synchronize()
def process_batched_inputs(batched_inputs):
images = [x["image"].to(device) for x in batched_inputs]
images = [normalizer(x, pixel_mean, pixel_std) for x in images]
images = ImageList.from_tensors(images, 32)
ori_size = (batched_inputs[0]["height"], batched_inputs[0]["width"])
return images.tensor, images.image_sizes[0], ori_size
@torch.jit.script
def rescoring_mask(scores, mask_pred, masks):
mask_pred_ = mask_pred.float()
return scores * ((masks * mask_pred_).sum([1, 2]) / (mask_pred_.sum([1, 2]) + 1e-6))
class SparseInst(nn.Module):
def __init__(self, cfg):
super().__init__()
self.device = torch.device(cfg.MODEL.DEVICE)
# backbone
self.backbone = build_backbone(cfg)
self.size_divisibility = self.backbone.size_divisibility
output_shape = self.backbone.output_shape()
self.encoder = build_sparse_inst_encoder(cfg, output_shape)
self.decoder = build_sparse_inst_decoder(cfg)
self.to(self.device)
# inference
self.cls_threshold = cfg.MODEL.SPARSE_INST.CLS_THRESHOLD
self.mask_threshold = cfg.MODEL.SPARSE_INST.MASK_THRESHOLD
self.max_detections = cfg.MODEL.SPARSE_INST.MAX_DETECTIONS
self.mask_format = cfg.INPUT.MASK_FORMAT
self.num_classes = cfg.MODEL.SPARSE_INST.DECODER.NUM_CLASSES
def forward(self, image, resized_size, ori_size):
max_size = image.shape[2:]
features = self.backbone(image)
features = self.encoder(features)
output = self.decoder(features)
result = self.inference_single(
output, resized_size, max_size, ori_size)
return result
def inference_single(self, outputs, img_shape, pad_shape, ori_shape):
"""
inference for only one sample
Args:
scores (tensor): [NxC]
masks (tensor): [NxHxW]
img_shape (list): (h1, w1), image after resized
pad_shape (list): (h2, w2), padded resized image
ori_shape (list): (h3, w3), original shape h3*w3 < h1*w1 < h2*w2
"""
result = Instances(ori_shape)
# scoring
pred_logits = outputs["pred_logits"][0].sigmoid()
pred_scores = outputs["pred_scores"][0].sigmoid().squeeze()
pred_masks = outputs["pred_masks"][0].sigmoid()
# obtain scores
scores, labels = pred_logits.max(dim=-1)
# remove by thresholding
keep = scores > self.cls_threshold
scores = torch.sqrt(scores[keep] * pred_scores[keep])
labels = labels[keep]
pred_masks = pred_masks[keep]
if scores.size(0) == 0:
return None
scores = rescoring_mask(scores, pred_masks > 0.45, pred_masks)
h, w = img_shape
# resize masks
pred_masks = F.interpolate(pred_masks.unsqueeze(1), size=pad_shape,
mode="bilinear", align_corners=False)[:, :, :h, :w]
pred_masks = F.interpolate(pred_masks, size=ori_shape, mode='bilinear',
align_corners=False).squeeze(1)
mask_pred = pred_masks > self.mask_threshold
mask_pred = BitMasks(mask_pred)
result.pred_masks = mask_pred
result.scores = scores
result.pred_classes = labels
return result
def test_sparseinst_speed(cfg, fp16=False):
device = torch.device('cuda:0')
model = SparseInst(cfg)
model.eval()
model.to(device)
print(model)
size = (cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=False)
torch.backends.cudnn.enable = True
torch.backends.cudnn.benchmark = False
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator = COCOMaskEvaluator(
cfg.DATASETS.TEST[0], ("segm",), False, output_folder)
evaluator.reset()
model.to(device)
model.eval()
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
durations = []
with autocast(enabled=fp16):
with torch.no_grad():
for idx, inputs in enumerate(data_loader):
images, resized_size, ori_size = process_batched_inputs(inputs)
synchronize()
start_time = time.perf_counter()
output = model(images, resized_size, ori_size)
synchronize()
end = time.perf_counter() - start_time
durations.append(end)
if idx % 1000 == 0:
print("process: [{}/{}] fps: {:.3f}".format(idx,
len(data_loader), 1/np.mean(durations[100:])))
evaluator.process(inputs, [{"instances": output}])
# evaluate
results = evaluator.evaluate()
print_csv_format(results)
latency = np.mean(durations[100:])
fps = 1 / latency
print("speed: {:.4f}s FPS: {:.2f}".format(latency, fps))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_sparse_inst_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
if __name__ == '__main__':
args = default_argument_parser()
args.add_argument("--fp16", action="store_true",
help="support fp16 for inference")
args = args.parse_args()
print("Command Line Args:", args)
cfg = setup(args)
test_sparseinst_speed(cfg, fp16=args.fp16)