From e25b1cd42e4a81d32a20c2273133338cbbff96e5 Mon Sep 17 00:00:00 2001 From: zhiminzhang0830 <452516515@qq.com> Date: Mon, 15 May 2023 06:49:57 +0000 Subject: [PATCH] update euler beam example --- examples/euler_beam/euler_beam.py | 53 ++++++++++++++++++++++--------- 1 file changed, 38 insertions(+), 15 deletions(-) diff --git a/examples/euler_beam/euler_beam.py b/examples/euler_beam/euler_beam.py index 772c08cf2..73d35952c 100644 --- a/examples/euler_beam/euler_beam.py +++ b/examples/euler_beam/euler_beam.py @@ -12,7 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. -import paddle +import numpy as np import ppsci from ppsci.autodiff import hessian @@ -22,8 +22,6 @@ if __name__ == "__main__": args = config.parse_args() - # enable computation for fourth-order differentiation of matmul - paddle.fluid.core.set_prim_eager_enabled(True) # set random seed for reproducibility ppsci.utils.misc.set_random_seed(42) # set training hyper-parameters @@ -58,24 +56,49 @@ random="Hammersley", name="EQ", ) - bc = ppsci.constraint.BoundaryConstraint( - { - "u0": lambda d: d["u"][0:1], - "u__x": lambda d: jacobian(d["u"], d["x"])[1:2], - "u__x__x": lambda d: hessian(d["u"], d["x"])[2:3], - "u__x__x__x": lambda d: jacobian(hessian(d["u"], d["x"]), d["x"])[3:4], - }, - {"u0": 0, "u__x": 0, "u__x__x": 0, "u__x__x__x": 0}, + bc1 = ppsci.constraint.BoundaryConstraint( + {"u0": lambda d: d["u"]}, + {"u0": 0}, geom["interval"], - {**dataloader_cfg, "batch_size": 4}, + {**dataloader_cfg, "batch_size": 1}, ppsci.loss.MSELoss("sum"), - evenly=True, - name="BC", + criteria=lambda x: np.isclose(x, 0.0), + name="BC1", + ) + bc2 = ppsci.constraint.BoundaryConstraint( + {"u__x": lambda d: jacobian(d["u"], d["x"])}, + {"u__x": 0}, + geom["interval"], + {**dataloader_cfg, "batch_size": 1}, + ppsci.loss.MSELoss("sum"), + criteria=lambda x: np.isclose(x, 0.0), + name="BC2", + ) + bc3 = ppsci.constraint.BoundaryConstraint( + {"u__x__x": lambda d: hessian(d["u"], d["x"])}, + {"u__x__x": 0}, + geom["interval"], + {**dataloader_cfg, "batch_size": 1}, + ppsci.loss.MSELoss("sum"), + criteria=lambda x: np.isclose(x, 1.0), + name="BC3", + ) + bc4 = ppsci.constraint.BoundaryConstraint( + {"u__x__x__x": lambda d: jacobian(hessian(d["u"], d["x"]), d["x"])}, + {"u__x__x__x": 0}, + geom["interval"], + {**dataloader_cfg, "batch_size": 1}, + ppsci.loss.MSELoss("sum"), + criteria=lambda x: np.isclose(x, 1.0), + name="BC4", ) # wrap constraints together constraint = { pde_constraint.name: pde_constraint, - bc.name: bc, + bc1.name: bc1, + bc2.name: bc2, + bc3.name: bc3, + bc4.name: bc4, } # set optimizer