-
Notifications
You must be signed in to change notification settings - Fork 0
/
tracking.py
183 lines (168 loc) · 7.44 KB
/
tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull
import re
def load_json_files(base_path):
# Load subfolders
folders = [os.path.join(base_path, d) for d in sorted(os.listdir(base_path))
if os.path.isdir(os.path.join(base_path, d)) and re.search(r'json\d+$', d)]
return folders
def read_json_file(file_path):
# JSON 파일을 읽기
with open(file_path, 'r') as f:
data = json.load(f)
return data
def natural_sort_key(s):
# 자연스러운 정렬을 위한 키 생성 함수
return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]
def track_person(folder_path):
# JSON 파일을 정렬된 순서로 로드
json_files = sorted([f for f in os.listdir(folder_path) if f.endswith('.json')], key=natural_sort_key)
if not json_files:
print(f"No files found in the specified directory: {folder_path}")
return None, None
detected = False
right_person = False
data_to_track = None
pos1 = []
counter = 0
for i, file_name in enumerate(json_files):
# print(f"Processing file {i + 1}/{len(json_files)}: {file_name}")
data = read_json_file(os.path.join(folder_path, file_name))
people = data.get('people', [])
# print(f"Number of people detected: {len(people)}")
# 처음으로 사람을 탐지하는 경우
if not detected and not right_person:
if not people:
print("No people detected in the frame.")
pos1.append(np.zeros(75))
elif len(people) >= 2:
# 여러 명이 탐지된 경우
fig, ax = plt.subplots(figsize=(12, 8)) # 창 크기를 조정합니다.
av1 = []
for k, person in enumerate(people):
p1 = np.array(person['pose_keypoints_2d'])
hull = ConvexHull(p1[::3], p1[1::3])
av1.append(hull.volume)
ax.plot(p1[::3], -p1[1::3], 'o')
ax.set_xlim([0, 4000])
ax.set_ylim([-3000, 0])
plt.legend([str(i+1) for i in range(len(people))])
plt.show()
num_to_track = int(input("Select num or 100 to skip: "))
plt.close()
if num_to_track == 100:
pos1.append(np.zeros(75))
detected = True
right_person = False
else:
pos1.append(people[num_to_track - 1]['pose_keypoints_2d'])
data_to_track = pos1[-1]
detected = True
right_person = True
elif len(people) == 1:
# 한 명이 탐지된 경우
print("Single person detected, automatically tracking this person.")
pos1.append(people[0]['pose_keypoints_2d'])
data_to_track = pos1[-1]
detected = True
right_person = True
elif detected and right_person:
# 선택된 사람을 추적하는 경우
if people:
mae = []
for k, person in enumerate(people):
p1 = np.array(person['pose_keypoints_2d'])
x0, y0 = np.array(data_to_track[::3]), np.array(data_to_track[1::3])
x1, y1 = p1[::3], p1[1::3]
# print(f"x0: {x0}")
# print(f"y0: {y0}")
# print(f"x1: {x1}")
# print(f"y1: {y1}")
valid = np.where((x0 != 0) & (y0 != 0) & (x1 != 0) & (y1 != 0))[0]
# print(f"valid: {valid}")
if valid.size == 0:
x_mae, y_mae = float('inf'), float('inf')
else:
x_mae = np.mean(np.abs(x0[valid] - x1[valid]))
y_mae = np.mean(np.abs(y0[valid] - y1[valid]))
# print(f"x_mae: {x_mae}")
# print(f"y_mae: {y_mae}")
mae.append(np.mean([x_mae, y_mae]))
# print(f"MAE: {mae}")
min_avg, I1 = min((val, idx) for (idx, val) in enumerate(mae))
print(f"min_avg: {min_avg}, I1: {I1}")
if min_avg > 100:
pos1.append(np.zeros(75))
detected = False
right_person = False
else:
pos1.append(people[I1]['pose_keypoints_2d'])
data_to_track = pos1[-1]
else:
pos1.append(np.zeros(75))
detected = False
right_person = False
elif detected and not right_person:
# 사람을 다시 선택해야 하는 경우
if not people:
pos1.append(np.zeros(75))
detected = False
right_person = False
else:
fig, ax = plt.subplots(figsize=(12, 8)) # 창 크기를 조정합니다.
for k, person in enumerate(people):
p1 = np.array(person['pose_keypoints_2d'])
ax.plot(p1[::3], -p1[1::3], 'o')
ax.set_xlim([0, 4000])
ax.set_ylim([-3000, 0])
plt.legend([str(i+1) for i in range(len(people))])
plt.show()
num_to_track = int(input("Select num or 100 to skip: "))
plt.close()
if num_to_track == 100:
pos1.append(np.zeros(75))
detected = True
right_person = False
else:
pos1.append(people[num_to_track - 1]['pose_keypoints_2d'])
data_to_track = pos1[-1]
detected = True
right_person = True
counter += 1
return np.array(pos1), json_files
def plot_data(data):
for i in range(0, data.shape[0], 20): # Change here
plt.clf()
x_data = data[i, 0::3]
y_data = data[i, 1::3]
if len(x_data) == len(y_data):
plt.plot(x_data, -y_data, 'bo')
plt.xlim([0, 4000])
plt.ylim([-3000, 0])
plt.pause(0.0001)
else:
print(f"Skipping frame {i} due to length mismatch: x_data length = {len(x_data)}, y_data length = {len(y_data)}")
plt.close()
def save_data(data, json_files, folder_path):
cam_num = os.path.basename(folder_path).split('_')[-1]
save_folder = os.path.join(folder_path, 'processed')
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for i, file_name in enumerate(json_files):
frame_data = {"version": 1.3, "people": [{"person_id": [-1], "pose_keypoints_2d": data[i].tolist(),
"face_keypoints_2d": [], "hand_left_keypoints_2d": [], "hand_right_keypoints_2d": [],
"pose_keypoints_3d": [], "face_keypoints_3d": [], "hand_left_keypoints_3d": [], "hand_right_keypoints_3d": []}]}
with open(os.path.join(save_folder, file_name), 'w') as f:
json.dump(frame_data, f)
if __name__ == "__main__":
base_path = r'C:\Users\5W555A\Desktop\240423_liun\cam\pose2sim\Pose2Sim\S01_Demo_SingleTrial\pose'
folders = load_json_files(base_path)
for folder in folders:
pos1, json_files = track_person(folder)
if pos1 is None:
continue
plot_data(pos1)
save_data(pos1, json_files, folder)