-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack_all_plot_0608.py
186 lines (164 loc) · 7.58 KB
/
track_all_plot_0608.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy.spatial import ConvexHull
import re
def find_json_folders(base_path):
json_folders = []
for root, dirs, files in os.walk(base_path):
if any(file.endswith('.json') for file in files):
json_folders.append(root)
return json_folders
def read_json_file(file_path):
print(f"Reading file from: {file_path}")
try:
with open(file_path, 'r') as f:
data = json.load(f)
print(f"Successfully read JSON data from {file_path}")
print(f"Keys in JSON data: {list(data.keys())}")
if 'people' in data:
print(f"Number of people in data: {len(data['people'])}")
else:
print("Warning: 'people' key not found in JSON data")
return data
except json.JSONDecodeError as e:
print(f"Error decoding JSON in file {file_path}: {str(e)}")
return None
except Exception as e:
print(f"Unexpected error reading file {file_path}: {str(e)}")
return None
def natural_sort_key(s):
return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]
def track_person(folder_path):
json_files = sorted([f for f in os.listdir(folder_path) if f.endswith('.json')], key=natural_sort_key)
if not json_files:
print(f"No files found in the specified directory: {folder_path}")
return None, None, None
pos1 = []
pre_tracking_data = []
previous_data = None
print(f"Processing {len(json_files)} JSON files in folder: {folder_path}")
for i, file_name in enumerate(json_files):
file_path = os.path.join(folder_path, file_name)
data = read_json_file(file_path)
if data is None:
print(f"Skipping file {file_name} due to read error")
continue
people = data.get('people', [])
print(f"File {file_name}: Found {len(people)} people")
pre_tracking_data.append(people)
if previous_data is None:
if len(people) > 0:
pos1.append(people[0]['pose_keypoints_2d'])
previous_data = people[0]['pose_keypoints_2d']
print(f"Initialized tracking with person 0 in file {file_name}")
else:
pos1.append(np.zeros(75))
print(f"No people found in file {file_name}, appending zeros")
else:
best_match = None
best_distance = float('inf')
for person in people:
p1 = np.array(person['pose_keypoints_2d'])
distance = np.sum(np.sqrt((previous_data - p1) ** 2))
if distance < best_distance:
best_match = p1
best_distance = distance
if best_match is not None:
pos1.append(best_match)
previous_data = best_match
print(f"Found best match in file {file_name} with distance {best_distance}")
else:
pos1.append(np.zeros(75))
print(f"No match found in file {file_name}, appending zeros")
print(f"Processed {len(pos1)} frames for tracking")
return np.array(pos1), json_files, pre_tracking_data
def animate_pre_post_tracking(all_pre_tracking_data, all_post_tracking_data, frame_step=10, interval=100):
num_folders = len(all_pre_tracking_data)
fig, axs = plt.subplots(num_folders, 2, figsize=(15, 5 * num_folders))
def update(frame):
for i in range(num_folders):
pre_ax, post_ax = axs[i]
pre_ax.clear()
post_ax.clear()
pre_ax.set_title(f'Pre-Tracking Folder {i + 1}')
pre_ax.set_xlim([0, 4000])
pre_ax.set_ylim([-3000, 0])
post_ax.set_title(f'Post-Tracking Folder {i + 1}')
post_ax.set_xlim([0, 4000])
post_ax.set_ylim([-3000, 0])
# Pre-tracking data
if frame < len(all_pre_tracking_data[i]):
people = all_pre_tracking_data[i][frame]
hulls = []
for person in people:
x_data = person['pose_keypoints_2d'][0::3]
y_data = person['pose_keypoints_2d'][1::3]
valid_points = [(x_data[j], y_data[j]) for j in range(len(x_data)) if x_data[j] != 0 and y_data[j] != 0]
if len(valid_points) >= 3:
hull = ConvexHull(valid_points)
hulls.append(hull)
pre_ax.plot(x_data, -np.array(y_data), 'o')
for hull in hulls:
for simplex in hull.simplices:
pre_ax.plot(hull.points[simplex, 0], -hull.points[simplex, 1], 'k-')
# Post-tracking data
if frame < all_post_tracking_data[i].shape[0]:
x_data = all_post_tracking_data[i][frame, 0::3]
y_data = all_post_tracking_data[i][frame, 1::3]
if len(x_data) == len(y_data):
valid_points = [(x_data[j], y_data[j]) for j in range(len(x_data)) if x_data[j] != 0 and y_data[j] != 0]
if len(valid_points) >= 3:
hull = ConvexHull(valid_points)
post_ax.plot(x_data, -np.array(y_data), 'bo')
for simplex in hull.simplices:
post_ax.plot(hull.points[simplex, 0], -hull.points[simplex, 1], 'k-')
max_frames = max(len(pre) for pre in all_pre_tracking_data)
frames = range(0, max_frames, frame_step)
ani = FuncAnimation(fig, update, frames=frames, interval=interval, repeat=False)
plt.tight_layout()
plt.show()
def save_data(data, json_files, folder_path):
base_folder = os.path.dirname(folder_path)
folder_name = os.path.basename(folder_path)
tracked_folder_name = folder_name + '_tracked'
save_folder = os.path.join(base_folder, tracked_folder_name)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for i, file_name in enumerate(json_files):
frame_data = {
"version": 1.3,
"people": [{
"person_id": [-1],
"pose_keypoints_2d": data[i].tolist(),
"face_keypoints_2d": [],
"hand_left_keypoints_2d": [],
"hand_right_keypoints_2d": [],
"pose_keypoints_3d": [],
"face_keypoints_3d": [],
"hand_left_keypoints_3d": [],
"hand_right_keypoints_3d": []
}]
}
with open(os.path.join(save_folder, file_name), 'w') as f:
json.dump(frame_data, f)
print(f"Saved processed data to {save_folder}")
if __name__ == "__main__":
base_path = r'C:\Users\5W555A\Desktop\FFF\pose2sim-w-Marker-Augmenter-Sync\Pose2Sim\S00_Demo_BatchSession\S00_P00_SingleParticipant\S00_P00_T01_BalancingTrial\pose\kicking10_4'
json_folders = find_json_folders(base_path)
print(f"Found {len(json_folders)} folders with JSON files")
all_pre_tracking_data = []
all_post_tracking_data = []
for folder in json_folders:
print(f"\nProcessing folder: {folder}")
pos1, json_files, pre_tracking_data = track_person(folder)
if pos1 is None:
print(f"Skipping folder {folder} due to tracking failure")
continue
all_pre_tracking_data.append(pre_tracking_data)
all_post_tracking_data.append(pos1)
save_data(pos1, json_files, folder)
print("\nStarting animation...")
animate_pre_post_tracking(all_pre_tracking_data, all_post_tracking_data, frame_step=50, interval=30)