-
Notifications
You must be signed in to change notification settings - Fork 0
/
track0512.py
172 lines (158 loc) · 7.03 KB
/
track0512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import json
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull
import re
def load_json_files(base_path):
# Load subfolders
folders = [os.path.join(base_path, d) for d in sorted(os.listdir(base_path))
if os.path.isdir(os.path.join(base_path, d)) and re.search(r'json\d+$', d)]
return folders
def read_json_file(file_path):
print(f"Reading file from: {file_path}")
with open(file_path, 'r') as f:
data = json.load(f)
return data
def natural_sort_key(s):
# 자연스러운 정렬을 위한 키 생성 함수
return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]
def track_person(folder_path):
json_files = sorted([f for f in os.listdir(folder_path) if f.endswith('.json')], key=natural_sort_key)
if not json_files:
print(f"No files found in the specified directory: {folder_path}")
return None, None
detected = False
right_person = False
data_to_track = None
pos1 = []
for i, file_name in enumerate(json_files):
data = read_json_file(os.path.join(folder_path, file_name))
people = data.get('people', [])
if not detected and not right_person:
if not people:
print("No people detected in the frame.")
pos1.append(np.zeros(75))
elif len(people) >= 2:
fig, ax = plt.subplots(figsize=(12, 8))
av1 = []
for k, person in enumerate(people):
p1 = np.array(person['pose_keypoints_2d'])
valid_points = [(p1[3 * j], p1[3 * j + 1]) for j in range(len(p1) // 3) if p1[3 * j] != 0 and p1[3 * j + 1] != 0]
if len(valid_points) >= 3:
try:
hull = ConvexHull(valid_points)
av1.append(hull.volume)
x, y = zip(*valid_points)
ax.plot(x, -np.array(y), 'o')
except Exception as e:
print(f"Error in ConvexHull calculation: {e}")
else:
print("Not enough valid points for ConvexHull")
ax.set_xlim([0, 4000])
ax.set_ylim([-3000, 0])
plt.legend([str(i + 1) for i in range(len(people))])
plt.show()
num_to_track = int(input("Select num or 100 to skip: "))
plt.close()
if num_to_track == 100:
pos1.append(np.zeros(75))
detected = True
right_person = False
else:
pos1.append(people[num_to_track - 1]['pose_keypoints_2d'])
data_to_track = pos1[-1]
detected = True
right_person = True
elif len(people) == 1:
print("Single person detected, automatically tracking this person.")
pos1.append(people[0]['pose_keypoints_2d'])
data_to_track = pos1[-1]
detected = True
right_person = True
elif detected and right_person:
if people:
mae = []
for k, person in enumerate(people):
p1 = np.array(person['pose_keypoints_2d'])
x0, y0 = np.array(data_to_track[::3]), np.array(data_to_track[1::3])
x1, y1 = p1[::3], p1[1::3]
valid = np.where((x0 != 0) & (y0 != 0) & (x1 != 0) & (y1 != 0))[0]
if valid.size == 0:
x_mae, y_mae = float('inf'), float('inf')
else:
x_mae = np.mean(np.abs(x0[valid] - x1[valid]))
y_mae = np.mean(np.abs(y0[valid] - y1[valid]))
mae.append(np.mean([x_mae, y_mae]))
min_avg, I1 = min((val, idx) for (idx, val) in enumerate(mae))
print(f"min_avg: {min_avg}, I1: {I1}")
if min_avg > 100:
pos1.append(np.zeros(75))
detected = False
right_person = False
else:
pos1.append(people[I1]['pose_keypoints_2d'])
data_to_track = pos1[-1]
else:
pos1.append(np.zeros(75))
detected = False
right_person = False
elif detected and not right_person:
if not people:
pos1.append(np.zeros(75))
detected = False
right_person = False
else:
fig, ax = plt.subplots(figsize=(12, 8))
for k, person in enumerate(people):
p1 = np.array(person['pose_keypoints_2d'])
ax.plot(p1[::3], -p1[1::3], 'o')
ax.set_xlim([0, 4000])
ax.set_ylim([-3000, 0])
plt.legend([str(i + 1) for i in range(len(people))])
plt.show()
num_to_track = int(input("Select num or 100 to skip: "))
plt.close()
if num_to_track == 100:
pos1.append(np.zeros(75))
detected = True
right_person = False
else:
pos1.append(people[num_to_track - 1]['pose_keypoints_2d'])
data_to_track = pos1[-1]
detected = True
right_person = True
return np.array(pos1), json_files
def plot_data(data):
for i in range(0, data.shape[0], 20):
plt.clf()
x_data = data[i, 0::3]
y_data = data[i, 1::3]
if len(x_data) == len(y_data):
plt.plot(x_data, -y_data, 'bo')
plt.xlim([0, 4000])
plt.ylim([-3000, 0])
plt.pause(0.0001)
else:
print(f"Skipping frame {i} due to length mismatch: x_data length = {len(x_data)}, y_data length = {len(y_data)}")
plt.close()
def save_data(data, json_files, folder_path):
cam_num = os.path.basename(folder_path).split('_')[-1]
save_folder = os.path.join(folder_path, 'processed')
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for i, file_name in enumerate(json_files):
frame_data = {"version": 1.3, "people": [{"person_id": [-1], "pose_keypoints_2d": data[i].tolist(),
"face_keypoints_2d": [], "hand_left_keypoints_2d": [], "hand_right_keypoints_2d": [],
"pose_keypoints_3d": [], "face_keypoints_3d": [], "hand_left_keypoints_3d": [], "hand_right_keypoints_3d": []}]}
with open(os.path.join(save_folder, file_name), 'w') as f:
json.dump(frame_data, f)
if __name__ == "__main__":
base_path = r'C:\Users\5W555A\Desktop\tracking\Person_tracking\demo'
folders = load_json_files(base_path)
for folder in folders:
pos1, json_files = track_person(folder)
if pos1 is None:
continue
plot_data(pos1)
save_data(pos1, json_files, folder)