-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain.py
190 lines (171 loc) · 7.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import tempfile
import click
import tops
import warnings
import traceback
import torch
import os
from tops import checkpointer
from sg3_torch_utils.ops import conv2d_gradfix, grid_sample_gradfix, bias_act, upfirdn2d
from tops.config import instantiate
from tops import logger
from dp2 import utils, infer
from dp2.gan_trainer import GANTrainer
torch.backends.cudnn.benchmark = True
def start_train(rank, world_size, debug, cfg_path, temp_dir, benchmark: bool):
print(rank, world_size)
cfg = utils.load_config(cfg_path)
if debug:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_printoptions(precision=10)
else:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
conv2d_gradfix.enabled = cfg.train.conv2d_gradfix_enabled
grid_sample_gradfix.enabled = cfg.train.grid_sample_gradfix_enabled
upfirdn2d.enabled = cfg.train.grid_sample_gradfix_enabled
bias_act.enabled = cfg.train.bias_act_plugin_enabled
if world_size > 1:
init_file = os.path.abspath(os.path.join(temp_dir, ".torch_distributed_init"))
init_method = f"file://{init_file}"
torch.distributed.init_process_group(
"nccl", rank=rank, world_size=world_size, init_method=init_method
)
# pin memory in dataloader would allocate memory on device:0 for distributed training.
torch.cuda.set_device(tops.get_device())
tops.set_AMP(cfg.train.amp.enabled)
utils.init_tops(cfg)
if tops.rank() == 0:
utils.print_config(cfg)
with open(cfg.output_dir.joinpath("config_path.py"), "w") as fp:
fp.write(utils.config_to_str(cfg))
if world_size > 1:
assert cfg.train.batch_size > tops.world_size()
assert cfg.train.batch_size % tops.world_size() == 0
cfg.train.batch_size //= world_size
if rank != 0:
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
tops.set_seed(cfg.train.seed + rank)
logger.log("Loading dataset.")
dl_val = instantiate(cfg.data.val.loader, channels_last=cfg.train.channels_last)
dl_train = instantiate(cfg.data.train.loader, channels_last=cfg.train.channels_last)
dl_train = iter(dl_train)
logger.log("Initializing models.")
G = instantiate(cfg.generator)
D = tops.to_cuda(instantiate(cfg.discriminator))
if tops.rank() == 0:
print(G)
print(D)
# TODO: EMA MIGHT NEED TO BE SYNCED ACCROSS GPUs before instantiate
G_EMA = utils.EMA(G, cfg.train.batch_size * world_size, **cfg.EMA)
G = tops.to_cuda(G)
if world_size > 1:
logger.log("Syncing models accross GPUs")
# Distributed is implemented self. # Buffers are never broadcasted during training.
for module in [G_EMA, G, D]:
params_and_buffers = list(module.named_parameters())
params_and_buffers += list(module.named_buffers())
for name, param in params_and_buffers:
torch.distributed.broadcast(param, src=0)
if cfg.train.compile_D.enabled:
compile_kwargs = instantiate(cfg.train.compile_D)
compile_kwargs.pop("enabled")
D = torch.compile(D, **compile_kwargs)
if cfg.train.compile_G.enabled:
compile_kwargs = instantiate(cfg.train.compile_G)
compile_kwargs.pop("enabled")
G = torch.compile(G, **compile_kwargs)
logger.log("Initializing optimizers")
grad_scaler_D = instantiate(cfg.train.amp.scaler_D)
grad_scaler_G = instantiate(cfg.train.amp.scaler_G)
G_optim = instantiate(cfg.G_optim, params=G.parameters())
D_optim = instantiate(cfg.D_optim, params=D.parameters())
loss_fnc = instantiate(cfg.loss_fnc, D=D, G=G)
logger.add_scalar("stats/gpu_batch_size", cfg.train.batch_size)
logger.add_scalar("stats/ngpus", world_size)
D.train()
G.train()
if hasattr(cfg.train, "discriminator_init_cfg") and not benchmark:
cfg_ = utils.load_config(cfg.train.discriminator_init_cfg)
ckpt = checkpointer.load_checkpoint(cfg_.checkpoint_dir)["discriminator"]
if hasattr(cfg_, "ckpt_mapper_D"):
ckpt = instantiate(cfg_.ckpt_mapper_D)(ckpt)
D.load_state_dict(ckpt)
if hasattr(cfg.train, "generator_init_cfg") and not benchmark:
cfg_ = utils.load_config(cfg.train.generator_init_cfg)
ckpt = checkpointer.load_checkpoint(cfg_.checkpoint_dir)["EMA_generator"]
if hasattr(cfg_, "ckpt_mapper"):
ckpt = instantiate(cfg_.ckpt_mapper)(ckpt)
infer.load_state_dict(G, ckpt)
infer.load_state_dict(G_EMA.generator, ckpt)
G_EMA.eval()
if cfg.train.channels_last:
G = G.to(memory_format=torch.channels_last)
D = D.to(memory_format=torch.channels_last)
if tops.world_size() > 1:
torch.distributed.barrier()
trainer = GANTrainer(
G=G,
D=D,
G_EMA=G_EMA,
D_optim=D_optim,
G_optim=G_optim,
dl_train=dl_train,
dl_val=dl_val,
scaler_D=grad_scaler_D,
scaler_G=grad_scaler_G,
ims_per_log=cfg.train.ims_per_log,
max_images_to_train=cfg.train.max_images_to_train,
ims_per_val=cfg.train.ims_per_val,
loss_handler=loss_fnc,
evaluate_fn=instantiate(cfg.data.train_evaluation_fn),
batch_size=cfg.train.batch_size,
broadcast_buffers=cfg.train.broadcast_buffers,
fp16_ddp_accumulate=cfg.train.fp16_ddp_accumulate,
save_state=not benchmark
)
if benchmark:
trainer.estimate_ims_per_hour()
if world_size > 1:
torch.distributed.barrier()
logger.finish()
if world_size > 1:
torch.distributed.destroy_process_group()
return
try:
trainer.train_loop()
except Exception as e:
traceback.print_exc()
exit()
tops.set_AMP(False)
tops.set_seed(0)
metrics = instantiate(cfg.data.evaluation_fn)(generator=G_EMA, dataloader=dl_val)
metrics = {f"metrics_final/{k}": v for k, v in metrics.items()}
logger.add_dict(metrics, level=logger.logger.INFO)
if world_size > 1:
torch.distributed.barrier()
logger.finish()
if world_size > 1:
torch.distributed.destroy_process_group()
@click.command()
@click.argument("config_path")
@click.option("--debug", default=False, is_flag=True)
@click.option("--benchmark", default=False, is_flag=True)
def main(config_path: str, debug: bool, benchmark: bool):
world_size = (
torch.cuda.device_count()
) # Manually overriding this does not work. have to set CUDA_VISIBLE_DEVICES environment variable
if world_size > 1:
torch.multiprocessing.set_start_method("spawn", force=True)
with tempfile.TemporaryDirectory() as temp_dir:
torch.multiprocessing.spawn(
start_train,
args=(world_size, debug, config_path, temp_dir, benchmark),
nprocs=torch.cuda.device_count(),
)
else:
start_train(0, 1, debug, config_path, None, benchmark)
if __name__ == "__main__":
main()