-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathpolyiou.cpp
144 lines (135 loc) · 3.88 KB
/
polyiou.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include <vector>
using namespace std;
#define maxn 51
const double eps=1E-8;
int sig(double d){
return(d>eps)-(d<-eps);
}
struct Point{
double x,y; Point(){}
Point(double x,double y):x(x),y(y){}
bool operator==(const Point&p)const{
return sig(x-p.x)==0&&sig(y-p.y)==0;
}
};
double cross(Point o,Point a,Point b){//叉积
return(a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y);
}
double area(Point* ps,int n){
ps[n]=ps[0];
double res=0;
for(int i=0;i<n;i++){
res+=ps[i].x*ps[i+1].y-ps[i].y*ps[i+1].x;
}
return res/2.0;
}
int lineCross(Point a,Point b,Point c,Point d,Point&p){
double s1,s2;
s1=cross(a,b,c);
s2=cross(a,b,d);
if(sig(s1)==0&&sig(s2)==0) return 2;
if(sig(s2-s1)==0) return 0;
p.x=(c.x*s2-d.x*s1)/(s2-s1);
p.y=(c.y*s2-d.y*s1)/(s2-s1);
return 1;
}
//多边形切割
//用直线ab切割多边形p,切割后的在向量(a,b)的左侧,并原地保存切割结果
//如果退化为一个点,也会返回去,此时n为1
//void polygon_cut(Point*p,int&n,Point a,Point b){
// static Point pp[maxn];
// int m=0;p[n]=p[0];
// for(int i=0;i<n;i++){
// if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i];
// if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1])))
// lineCross(a,b,p[i],p[i+1],pp[m++]);
// }
// n=0;
// for(int i=0;i<m;i++)
// if(!i||!(pp[i]==pp[i-1]))
// p[n++]=pp[i];
// while(n>1&&p[n-1]==p[0])n--;
//}
void polygon_cut(Point*p,int&n,Point a,Point b, Point* pp){
// static Point pp[maxn];
int m=0;p[n]=p[0];
for(int i=0;i<n;i++){
if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i];
if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1])))
lineCross(a,b,p[i],p[i+1],pp[m++]);
}
n=0;
for(int i=0;i<m;i++)
if(!i||!(pp[i]==pp[i-1]))
p[n++]=pp[i];
while(n>1&&p[n-1]==p[0])n--;
}
//---------------华丽的分隔线-----------------//
//返回三角形oab和三角形ocd的有向交面积,o是原点//
double intersectArea(Point a,Point b,Point c,Point d){
Point o(0,0);
int s1=sig(cross(o,a,b));
int s2=sig(cross(o,c,d));
if(s1==0||s2==0)return 0.0;//退化,面积为0
if(s1==-1) swap(a,b);
if(s2==-1) swap(c,d);
Point p[10]={o,a,b};
int n=3;
Point pp[maxn];
polygon_cut(p,n,o,c, pp);
polygon_cut(p,n,c,d, pp);
polygon_cut(p,n,d,o, pp);
double res=fabs(area(p,n));
if(s1*s2==-1) res=-res;return res;
}
//求两多边形的交面积
double intersectArea(Point*ps1,int n1,Point*ps2,int n2){
if(area(ps1,n1)<0) reverse(ps1,ps1+n1);
if(area(ps2,n2)<0) reverse(ps2,ps2+n2);
ps1[n1]=ps1[0];
ps2[n2]=ps2[0];
double res=0;
for(int i=0;i<n1;i++){
for(int j=0;j<n2;j++){
res+=intersectArea(ps1[i],ps1[i+1],ps2[j],ps2[j+1]);
}
}
return res;//assumeresispositive!
}
double iou_poly(vector<double> p, vector<double> q) {
Point ps1[maxn],ps2[maxn];
int n1 = 4;
int n2 = 4;
for (int i = 0; i < 4; i++) {
ps1[i].x = p[i * 2];
ps1[i].y = p[i * 2 + 1];
ps2[i].x = q[i * 2];
ps2[i].y = q[i * 2 + 1];
}
double inter_area = intersectArea(ps1, n1, ps2, n2);
double union_area = fabs(area(ps1, n1)) + fabs(area(ps2, n2)) - inter_area;
double iou = inter_area / union_area;
// cout << "inter_area:" << inter_area << endl;
// cout << "union_area:" << union_area << endl;
// cout << "iou:" << iou << endl;
return iou;
}
//
//int main(){
// double p[8] = {0, 0, 1, 0, 1, 1, 0, 1};
// double q[8] = {0.5, 0.5, 1.5, 0.5, 1.5, 1.5, 0.5, 1.5};
// vector<double> P(p, p + 8);
// vector<double> Q(q, q + 8);
// iou_poly(P, Q);
// return 0;
//}
//int main(){
// double p[8] = {0, 0, 1, 0, 1, 1, 0, 1};
// double q[8] = {0.5, 0.5, 1.5, 0.5, 1.5, 1.5, 0.5, 1.5};
// iou_poly(p, q);
// return 0;
//}