Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add type hints for FNet PyTorch #16123

Merged
merged 1 commit into from
Mar 14, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 59 additions & 59 deletions src/transformers/models/fnet/modeling_fnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
import warnings
from dataclasses import dataclass
from functools import partial
from typing import Optional, Tuple
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
Expand Down Expand Up @@ -644,15 +644,15 @@ def set_output_embeddings(self, new_embeddings):
@replace_return_docstrings(output_type=FNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
next_sentence_label=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FNetForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
Expand Down Expand Up @@ -741,14 +741,14 @@ def set_output_embeddings(self, new_embeddings):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
Expand Down Expand Up @@ -799,15 +799,15 @@ def __init__(self, config):
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
) -> Union[Tuple, NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
Expand Down Expand Up @@ -900,14 +900,14 @@ def __init__(self, config):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Expand Down Expand Up @@ -985,14 +985,14 @@ def __init__(self, config):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
Expand Down Expand Up @@ -1067,14 +1067,14 @@ def __init__(self, config):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Expand Down Expand Up @@ -1136,15 +1136,15 @@ def __init__(self, config):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Expand Down