-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathlfqa_utils.py
653 lines (585 loc) · 27.1 KB
/
lfqa_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import functools
import math
import os # noqa: F401
from random import choice, randint
from time import time
import numpy as np
import torch
import torch.utils.checkpoint as checkpoint
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from tqdm import tqdm
import faiss # noqa: F401
import nlp # noqa: F401
import pandas as pd
from elasticsearch import Elasticsearch # noqa: F401
from elasticsearch.helpers import bulk, streaming_bulk # noqa: F401
from transformers import AdamW, AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup
pd.set_option("display.max_colwidth", None)
###############
# Sparse index
###############
def make_es_index_snippets(es_client, passages_dset, index_name="english_wiki_kilt_snippets_100w"):
index_config = {
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {
"properties": {
"article_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"},
"section_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"},
"passage_text": {"type": "text", "analyzer": "standard", "similarity": "BM25"},
}
},
}
es_client.indices.create(index=index_name, body=index_config)
number_of_docs = passages_dset.num_rows
progress = tqdm(unit="docs", total=number_of_docs)
successes = 0
def passage_generator():
for passage in passages_dset:
yield passage
# create the ES index
for ok, action in streaming_bulk(client=es_client, index=index_name, actions=passage_generator(),):
progress.update(1)
successes += ok
print("Indexed %d documents" % (successes,))
def query_es_index(question, es_client, index_name="english_wiki_kilt_snippets_100w", n_results=10, min_length=20):
q = question.lower()
banned = ["how", "why", "what", "where", "which", "do", "does", "is", "?", "eli5", "eli5:"]
q = " ".join([w for w in q.split() if w not in banned])
response = es_client.search(
index=index_name,
body={
"query": {
"multi_match": {
"query": q,
"fields": ["article_title", "section_title", "passage_text^2"],
"type": "cross_fields",
}
},
"size": 2 * n_results,
},
)
hits = response["hits"]["hits"]
support_doc = "<P> " + " <P> ".join([hit["_source"]["passage_text"] for hit in hits])
res_list = [dict([(k, hit["_source"][k]) for k in hit["_source"] if k != "passage_text"]) for hit in hits]
for r, hit in zip(res_list, hits):
r["passage_id"] = hit["_id"]
r["score"] = hit["_score"]
r["passage_text"] = hit["_source"]["passage_text"]
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results]
return support_doc, res_list
###############
# ELI5 retriever training
###############
class ELI5DatasetQARetriver(Dataset):
def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None):
self.data = examples_array
self.answer_thres = extra_answer_threshold
self.min_length = min_answer_length
self.training = training
self.n_samples = self.data.num_rows if n_samples is None else n_samples
def __len__(self):
return self.n_samples
def make_example(self, idx):
example = self.data[idx]
question = example["title"]
if self.training:
answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))]
answer_tab = choice(answers).split(" ")
start_idx = randint(0, max(0, len(answer_tab) - self.min_length))
answer_span = " ".join(answer_tab[start_idx:])
else:
answer_span = example["answers"]["text"][0]
return (question, answer_span)
def __getitem__(self, idx):
return self.make_example(idx % self.data.num_rows)
class RetrievalQAEmbedder(torch.nn.Module):
def __init__(self, sent_encoder, dim):
super(RetrievalQAEmbedder, self).__init__()
self.sent_encoder = sent_encoder
self.output_dim = 128
self.project_q = torch.nn.Linear(dim, self.output_dim, bias=False)
self.project_a = torch.nn.Linear(dim, self.output_dim, bias=False)
self.ce_loss = torch.nn.CrossEntropyLoss(reduction="mean")
def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1):
# reproduces BERT forward pass with checkpointing
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
return self.sent_encoder(input_ids, attention_mask=attention_mask)[1]
else:
# prepare implicit variables
device = input_ids.device
input_shape = input_ids.size()
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
head_mask = [None] * self.sent_encoder.config.num_hidden_layers
extended_attention_mask: torch.Tensor = self.sent_encoder.get_extended_attention_mask(
attention_mask, input_shape, device
)
# define function for checkpointing
def partial_encode(*inputs):
encoder_outputs = self.sent_encoder.encoder(inputs[0], attention_mask=inputs[1], head_mask=head_mask,)
sequence_output = encoder_outputs[0]
pooled_output = self.sent_encoder.pooler(sequence_output)
return pooled_output
# run embedding layer on everything at once
embedding_output = self.sent_encoder.embeddings(
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
)
# run encoding and pooling on one mini-batch at a time
pooled_output_list = []
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
pooled_output_list.append(pooled_output)
return torch.cat(pooled_output_list, dim=0)
def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1):
q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size)
return self.project_q(q_reps)
def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1):
a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size)
return self.project_a(a_reps)
def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1):
device = q_ids.device
q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size)
a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size)
compare_scores = torch.mm(q_reps, a_reps.t())
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
loss = (loss_qa + loss_aq) / 2
return loss
def make_qa_retriever_model(model_name="google/bert_uncased_L-8_H-512_A-8", from_file=None, device="cuda:0"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
bert_model = AutoModel.from_pretrained(model_name).to(device)
# run bert_model on a dummy batch to get output dimension
d_ids = torch.LongTensor(
[[bert_model.config.bos_token_id if bert_model.config.bos_token_id is not None else 1]]
).to(device)
d_mask = torch.LongTensor([[1]]).to(device)
sent_dim = bert_model(d_ids, attention_mask=d_mask)[1].shape[-1]
qa_embedder = RetrievalQAEmbedder(bert_model, sent_dim).to(device)
if from_file is not None:
param_dict = torch.load(from_file) # has model weights, optimizer, and scheduler states
qa_embedder.load_state_dict(param_dict["model"])
return tokenizer, qa_embedder
def make_qa_retriever_batch(qa_list, tokenizer, max_len=64, device="cuda:0"):
q_ls = [q for q, a in qa_list]
a_ls = [a for q, a in qa_list]
q_toks = tokenizer.batch_encode_plus(q_ls, max_length=max_len, pad_to_max_length=True)
q_ids, q_mask = (
torch.LongTensor(q_toks["input_ids"]).to(device),
torch.LongTensor(q_toks["attention_mask"]).to(device),
)
a_toks = tokenizer.batch_encode_plus(a_ls, max_length=max_len, pad_to_max_length=True)
a_ids, a_mask = (
torch.LongTensor(a_toks["input_ids"]).to(device),
torch.LongTensor(a_toks["attention_mask"]).to(device),
)
return (q_ids, q_mask, a_ids, a_mask)
def train_qa_retriever_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0):
model.train()
# make iterator
train_sampler = RandomSampler(dataset)
model_collate_fn = functools.partial(
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
)
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
# accumulate loss since last print
loc_steps = 0
loc_loss = 0.0
st_time = time()
for step, batch in enumerate(epoch_iterator):
q_ids, q_mask, a_ids, a_mask = batch
pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
loss = pre_loss.sum()
# optimizer
loss.backward()
optimizer.step()
scheduler.step()
model.zero_grad()
# some printing within the epoch
loc_loss += loss.item()
loc_steps += 1
if step % args.print_freq == 0 or step == 1:
print(
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time,
)
)
loc_loss = 0
loc_steps = 0
def train_qa_retriever_joint_epoch(model, dataset_list, tokenizer, optimizer, scheduler, args, e=0):
model.train()
model_collate_fn = functools.partial(
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
)
# make iterator
train_samplers = [RandomSampler(dataset) for dataset in dataset_list]
data_loaders = [
DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
for dataset, train_sampler in zip(dataset_list, train_samplers)
]
iterators = [iter(dloader) for dloader in data_loaders]
joint_iter = zip(*iterators)
# accumulate loss since last print
loc_steps = 0
loc_loss = 0.0
st_time = time()
for step, (batches,) in enumerate(zip(joint_iter)):
for batch in batches:
q_ids, q_mask, a_ids, a_mask = batch
loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
# optimizer
loss.backward()
optimizer.step()
scheduler.step()
model.zero_grad()
# some printing within the epoch
loc_loss += loss.item()
loc_steps += 1
if step % args.print_freq == 0:
print(
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
e, step, len(dataset_list[0]) // args.batch_size, loc_loss / loc_steps, time() - st_time,
)
)
loc_loss = 0
loc_steps = 0
def evaluate_qa_retriever(model, dataset, tokenizer, args):
model.eval()
# make iterator
eval_sampler = SequentialSampler(dataset)
model_collate_fn = functools.partial(
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
)
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=eval_sampler, collate_fn=model_collate_fn)
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
tot_loss = 0.0
with torch.no_grad():
for step, batch in enumerate(epoch_iterator):
q_ids, q_mask, a_ids, a_mask = batch
loss = model(q_ids, q_mask, a_ids, a_mask)
tot_loss += loss.item()
return tot_loss / (step + 1)
def train_qa_retriever(qar_model, qar_tokenizer, qar_train_dset, qar_valid_dset, qar_args):
qar_optimizer = AdamW(qar_model.parameters(), lr=qar_args.learning_rate, eps=1e-8)
qar_scheduler = get_linear_schedule_with_warmup(
qar_optimizer,
num_warmup_steps=100,
num_training_steps=(qar_args.num_epochs + 1) * math.ceil(len(qar_train_dset) / qar_args.batch_size),
)
for e in range(qar_args.num_epochs):
train_qa_retriever_epoch(qar_model, qar_train_dset, qar_tokenizer, qar_optimizer, qar_scheduler, qar_args, e)
m_save_dict = {
"model": qar_model.state_dict(),
"optimizer": qar_optimizer.state_dict(),
"scheduler": qar_scheduler.state_dict(),
}
print("Saving model {}".format(qar_args.model_save_name))
torch.save(m_save_dict, "{}_{}.pth".format(qar_args.model_save_name, e))
eval_loss = evaluate_qa_retriever(qar_model, qar_valid_dset, qar_tokenizer, qar_args)
print("Evaluation loss epoch {:4d}: {:.3f}".format(e, eval_loss))
###############
# ELI5 seq2seq model training
###############
class ELI5DatasetS2S(Dataset):
def __init__(
self, examples_array, make_doc_fun=None, extra_answer_threshold=3, document_cache=None, training=True
):
self.training = training
self.data = examples_array
self.make_doc_function = make_doc_fun
self.document_cache = {} if document_cache is None else document_cache
assert not (make_doc_fun is None and document_cache is None)
# make index of specific question-answer pairs from multi-answers
if self.training:
self.qa_id_list = [
(i, j)
for i, qa in enumerate(self.data)
for j, (a, sc) in enumerate(zip(qa["answers"]["text"], qa["answers"]["score"]))
if j == 0 or sc >= extra_answer_threshold
]
else:
self.qa_id_list = [(i, 0) for i in range(self.data.num_rows)]
def __len__(self):
return len(self.qa_id_list)
def make_example(self, idx):
i, j = self.qa_id_list[idx]
example = self.data[i]
question = example["title"] + " " + example["selftext"]
answer = example["answers"]["text"][j]
q_id = example["q_id"]
if self.make_doc_function is not None:
self.document_cache[q_id] = self.document_cache.get(q_id, self.make_doc_function(example["title"]))
document = self.document_cache[q_id]
in_st = "question: {} context: {}".format(
question.lower().replace(" --t--", "").strip(), document.lower().strip(),
)
out_st = answer
return (in_st, out_st)
def __getitem__(self, idx):
return self.make_example(idx)
def make_qa_s2s_model(model_name="facebook/bart-large", from_file=None, device="cuda:0"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if from_file is not None:
param_dict = torch.load(from_file) # has model weights, optimizer, and scheduler states
model.load_state_dict(param_dict["model"])
return tokenizer, model
def make_qa_s2s_batch(qa_list, tokenizer, max_len=64, max_a_len=360, device="cuda:0"):
q_ls = [q for q, a in qa_list]
a_ls = [a for q, a in qa_list]
q_toks = tokenizer.batch_encode_plus(q_ls, max_length=max_len, pad_to_max_length=True)
q_ids, q_mask = (
torch.LongTensor(q_toks["input_ids"]).to(device),
torch.LongTensor(q_toks["attention_mask"]).to(device),
)
a_toks = tokenizer.batch_encode_plus(a_ls, max_length=min(max_len, max_a_len), pad_to_max_length=True)
a_ids, a_mask = (
torch.LongTensor(a_toks["input_ids"]).to(device),
torch.LongTensor(a_toks["attention_mask"]).to(device),
)
lm_labels = a_ids[:, 1:].contiguous().clone()
lm_labels[a_mask[:, 1:].contiguous() == 0] = -100
model_inputs = {
"input_ids": q_ids,
"attention_mask": q_mask,
"decoder_input_ids": a_ids[:, :-1].contiguous(),
"lm_labels": lm_labels,
}
return model_inputs
def train_qa_s2s_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0, curriculum=False):
model.train()
# make iterator
if curriculum:
train_sampler = SequentialSampler(dataset)
else:
train_sampler = RandomSampler(dataset)
model_collate_fn = functools.partial(
make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
)
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
# accumulate loss since last print
loc_steps = 0
loc_loss = 0.0
st_time = time()
for step, batch_inputs in enumerate(epoch_iterator):
pre_loss = model(**batch_inputs)[0]
loss = pre_loss.sum() / pre_loss.shape[0]
loss.backward()
# optimizer
if step % args.backward_freq == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
# some printing within the epoch
loc_loss += loss.item()
loc_steps += 1
if step % args.print_freq == 0 or step == 1:
print(
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time,
)
)
loc_loss = 0
loc_steps = 0
def eval_qa_s2s_epoch(model, dataset, tokenizer, args):
model.eval()
# make iterator
train_sampler = SequentialSampler(dataset)
model_collate_fn = functools.partial(
make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
)
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
# accumulate loss since last print
loc_steps = 0
loc_loss = 0.0
st_time = time()
with torch.no_grad():
for step, batch_inputs in enumerate(epoch_iterator):
pre_loss = model(**batch_inputs)[0]
loss = pre_loss.sum() / pre_loss.shape[0]
loc_loss += loss.item()
loc_steps += 1
if step % args.print_freq == 0:
print(
"{:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time,
)
)
print("Total \t L: {:.3f} \t -- {:.3f}".format(loc_loss / loc_steps, time() - st_time,))
def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args):
s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-8)
s2s_scheduler = get_linear_schedule_with_warmup(
s2s_optimizer,
num_warmup_steps=400,
num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size),
)
for e in range(s2s_args.num_epochs):
train_qa_s2s_epoch(
qa_s2s_model,
s2s_train_dset,
qa_s2s_tokenizer,
s2s_optimizer,
s2s_scheduler,
s2s_args,
e,
curriculum=(e == 0),
)
m_save_dict = {
"model": qa_s2s_model.state_dict(),
"optimizer": s2s_optimizer.state_dict(),
"scheduler": s2s_scheduler.state_dict(),
}
print("Saving model {}".format(s2s_args.model_save_name))
eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args)
torch.save(m_save_dict, "{}_{}.pth".format(s2s_args.model_save_name, e))
# generate answer from input "question: ... context: <p> ..."
def qa_s2s_generate(
question_doc,
qa_s2s_model,
qa_s2s_tokenizer,
num_answers=1,
num_beams=None,
min_len=64,
max_len=256,
do_sample=False,
temp=1.0,
top_p=None,
top_k=None,
max_input_length=512,
device="cuda:0",
):
model_inputs = make_qa_s2s_batch([(question_doc, "A")], qa_s2s_tokenizer, max_input_length, device=device,)
n_beams = num_answers if num_beams is None else max(num_beams, num_answers)
generated_ids = qa_s2s_model.generate(
input_ids=model_inputs["input_ids"],
attention_mask=model_inputs["attention_mask"],
min_length=min_len,
max_length=max_len,
do_sample=do_sample,
early_stopping=True,
num_beams=1 if do_sample else n_beams,
temperature=temp,
top_k=top_k,
top_p=top_p,
eos_token_id=qa_s2s_tokenizer.eos_token_id,
no_repeat_ngram_size=3,
num_return_sequences=num_answers,
decoder_start_token_id=qa_s2s_tokenizer.bos_token_id,
)
return [qa_s2s_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in generated_ids]
###############
# ELI5-trained retrieval model usage
###############
def embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length=128, device="cuda:0"):
a_toks = tokenizer.batch_encode_plus(passages, max_length=max_length, pad_to_max_length=True)
a_ids, a_mask = (
torch.LongTensor(a_toks["input_ids"]).to(device),
torch.LongTensor(a_toks["attention_mask"]).to(device),
)
with torch.no_grad():
a_reps = qa_embedder.embed_answers(a_ids, a_mask).cpu().type(torch.float)
return a_reps.numpy()
def embed_questions_for_retrieval(q_ls, tokenizer, qa_embedder, device="cuda:0"):
q_toks = tokenizer.batch_encode_plus(q_ls, max_length=128, pad_to_max_length=True)
q_ids, q_mask = (
torch.LongTensor(q_toks["input_ids"]).to(device),
torch.LongTensor(q_toks["attention_mask"]).to(device),
)
with torch.no_grad():
q_reps = qa_embedder.embed_questions(q_ids, q_mask).cpu().type(torch.float)
return q_reps.numpy()
def make_qa_dense_index(
qa_embedder,
tokenizer,
passages_dset,
batch_size=512,
max_length=128,
index_name="kilt_passages_reps.dat",
dtype="float32",
device="cuda:0",
):
st_time = time()
fp = np.memmap(index_name, dtype=dtype, mode="w+", shape=(passages_dset.num_rows, 128))
n_batches = math.ceil(passages_dset.num_rows / batch_size)
for i in range(n_batches):
passages = [p for p in passages_dset[i * batch_size : (i + 1) * batch_size]["passage_text"]]
reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length, device)
fp[i * batch_size : (i + 1) * batch_size] = reps
if i % 50 == 0:
print(i, time() - st_time)
def evaluate_retriever(qa_list, retriever_func, scoring_func, n_ret=10, verbose=False):
total_retriever_time = 0.0
total_retriever_score = 0.0
st_time = time()
for i, (question, answer) in enumerate(qa_list):
r_time = time()
retrieved_passages = retriever_func(question, n_ret)
total_retriever_time += time() - r_time
total_retriever_score += scoring_func(retrieved_passages, answer)
if verbose and ((i + 1) % 500 == 0 or i <= 1):
print(
"{:03d}: S-{:.4f} T-{:.4f} | {:.2f}".format(
i + 1, total_retriever_score / (i + 1), total_retriever_time / (i + 1), time() - st_time
)
)
return {"idf_recall": total_retriever_score / (i + 1), "retrieval_time": total_retriever_time / (i + 1)}
# build a support document for the question out of Wikipedia snippets
def query_qa_dense_index(
question, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20, device="cuda:0"
):
q_rep = embed_questions_for_retrieval([question], tokenizer, qa_embedder, device=device)
D, I = wiki_index.search(q_rep, 2 * n_results)
res_passages = [wiki_passages[int(i)] for i in I[0]]
support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages])
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results]
for r, sc in zip(res_list, D[0]):
r["score"] = float(sc)
return support_doc, res_list
def batch_query_qa_dense_index(questions, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10):
q_rep = embed_questions_for_retrieval(questions, tokenizer, qa_embedder)
D, I = wiki_index.search(q_rep, n_results)
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I]
support_doc_lst = [
"<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst
]
all_res_lists = []
for (res_passages, dl) in zip(res_passages_lst, D):
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
for r, sc in zip(res_list, dl):
r["score"] = float(sc)
all_res_lists += [res_list[:]]
return support_doc_lst, all_res_lists
# find nearest neighbors of an answer or declarative text in Wikipedia snippets
def query_qa_dense_index_nn(passage, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20):
a_rep = embed_passages_for_retrieval([passage], tokenizer, qa_embedder)
D, I = wiki_index.search(a_rep, 2 * n_results)
res_passages = [wiki_passages[int(i)] for i in I[0]]
support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages])
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results]
for r, sc, i in zip(res_list, D[0], I[0]):
r["passage_id"] = int(i)
r["score"] = float(sc)
return support_doc, res_list
def batch_query_qa_dense_index_nn(passages, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10):
a_reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder)
D, I = wiki_index.search(a_reps, n_results)
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I]
support_doc_lst = [
"<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst
]
all_res_lists = []
for (res_passages, dl, il) in zip(res_passages_lst, D, I):
res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
for r, sc, i in zip(res_list, dl, il):
r["passage_id"] = int(i)
r["score"] = float(sc)
all_res_lists += [res_list[:]]
return support_doc_lst, all_res_lists