-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_kg_analysis.py
60 lines (47 loc) · 2.38 KB
/
1_kg_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
from helpers.helpers import (find_head_tail_rel, get_data_from_kg_name,
initialize_nx_graph)
def main(kg_name):
dataset_interface = get_data_from_kg_name(kg_name)[0]
dataset_nx_graph = initialize_nx_graph(dataset_interface)
print(f'{kg_name} Stats: ')
print("Number of entities", dataset_interface.num_entities)
print("Number of relations", dataset_interface.num_relations)
print("Size of train set", len(dataset_interface.train_triples))
print("Size of test set", len(dataset_interface.test_triples))
print("Size of valid set", len(dataset_interface.valid_triples))
max_degree = 0
node_with_max_degree = None
for node in dataset_nx_graph.nodes():
degree = dataset_nx_graph.degree(node)
if degree > max_degree:
max_degree = degree
node_with_max_degree = node
print("Entity with max degree", dataset_interface.get_name_for_entity_id(
node_with_max_degree), "with", max_degree)
# Calculate and print average degree
average_degree = sum(dict(dataset_nx_graph.degree()).values()
) / dataset_nx_graph.number_of_nodes()
print(f"Average Degree: {average_degree:.2f}")
# Sort the output based on the length of training_samples
sorted_output = sorted(dataset_interface.relations, key=lambda rel: len(find_head_tail_rel(
dataset_interface, rel_id=dataset_interface.get_id_for_relation_name(rel))), reverse=True)
print("Relation", "\t", 'Relation Type (1-1,1-N,N-1, N-N)',
"\t", 'Num training samples')
for index, relation in enumerate(sorted_output):
try:
relation_type = dataset_interface.relation_2_type[dataset_interface.get_id_for_relation_name(
relation)]
relation_id = dataset_interface.get_id_for_relation_name(relation)
training_samples = find_head_tail_rel(
dataset_interface, rel_id=relation_id)
print(relation, '\t', relation_type,
'\t', f'{len(training_samples)}')
except Exception as e:
print("failed", relation, e)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process KG name.')
parser.add_argument('--kg_name', type=str,
help='Name of the knowledge graph', required=True)
args = parser.parse_args()
main(args.kg_name)