This repository has been archived by the owner on Apr 21, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprojector.py
executable file
·184 lines (124 loc) · 5.59 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import math
import os
from PIL import Image
from tqdm import tqdm
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
import lpips
from models.GAN import Generator
def noise_regularize(noises):
loss = 0
for noise in noises:
size = noise.shape[2]
while True:
loss = loss + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) \
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
if size <= 8:
break
noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2])
noise = noise.mean([3, 5])
size //= 2
return loss
def noise_normalize_(noises):
for noise in noises:
mean = noise.mean()
std = noise.std()
noise.data.add_(-mean).div_(std)
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def latent_noise(latent, strength):
noise = torch.randn_like(latent) * strength
return latent + noise
def make_image(tensor):
return tensor.detach().clamp_(min=-1, max=1).add(1).div_(2).mul(255) \
.type(torch.uint8).permute(0, 2, 3, 1).to('cpu').numpy()
def main():
pass
if __name__ == '__main__':
device = 'cuda'
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt', type=str, required=True)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--lr_rampup', type=float, default=0.05)
parser.add_argument('--lr_rampdown', type=float, default=0.25)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--noise', type=float, default=0.05)
parser.add_argument('--noise_ramp', type=float, default=0.75)
parser.add_argument('--step', type=int, default=1000)
parser.add_argument('--noise_regularize', type=float, default=1e5)
parser.add_argument('--mse', type=float, default=0)
parser.add_argument('--w_plus', action='store_true')
parser.add_argument('files', metavar='FILES', nargs='+')
args = parser.parse_args()
n_mean_latent = 10000
resize = min(args.size, 256)
transform = transforms.Compose([transforms.Resize(resize),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5],
[0.5, 0.5, 0.5])])
imgs = []
for imgfile in args.files:
img = transform(Image.open(imgfile).convert('RGB'))
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
g_ema = Generator(args.size, 512, 8)
g_ema.load_state_dict(torch.load(args.ckpt)['g_ema'])
g_ema.eval()
g_ema = g_ema.to(device)
with torch.no_grad():
noise_sample = torch.randn(n_mean_latent, 512, device=device)
latent_out = g_ema.style(noise_sample)
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=device.startswith('cuda'))
noises = g_ema.make_noise()
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(2, 1)
if args.w_plus:
latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
latent_in.requires_grad = True
for noise in noises:
noise.requires_grad = True
optimizer = optim.Adam([latent_in] + noises, lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]['lr'] = lr
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2
latent_n = latent_noise(latent_in, noise_strength.item())
img_gen, _ = g_ema([latent_n], input_is_latent=True, noise=noises)
batch, channel, height, width = img_gen.shape
if height > 256:
factor = height // 256
img_gen = img_gen.reshape(batch, channel, height // factor, factor, width // factor, factor)
img_gen = img_gen.mean([3, 5])
p_loss = percept(img_gen, imgs).sum()
n_loss = noise_regularize(noises)
mse_loss = F.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
noise_normalize_(noises)
if (i + 1) % 100 == 0:
latent_path.append(latent_in.detach().clone())
pbar.set_description((f'perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};'
f' mse: {mse_loss.item():.4f}; lr: {lr:.4f}'))
result_file = {'noises': noises}
img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True, noise=noises)
filename = os.path.splitext(os.path.basename(args.files[0]))[0] + '.pt'
img_ar = make_image(img_gen)
for i, input_name in enumerate(args.files):
result_file[input_name] = {'img': img_gen[i], 'latent': latent_in[i]}
img_name = os.path.splitext(os.path.basename(input_name))[0] + '-project.png'
pil_img = Image.fromarray(img_ar[i])
pil_img.save(img_name)
torch.save(result_file, filename)