This repository has been archived by the owner on Jan 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathCustomLayers.py
323 lines (267 loc) · 11.2 KB
/
CustomLayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
-------------------------------------------------
File Name: CustomLayers.py
Date: 2019/10/17
Description: Copy from: https://github.com/lernapparat/lernapparat
-------------------------------------------------
"""
import numpy as np
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
class PixelNormLayer(nn.Module):
def __init__(self, epsilon=1e-8):
super().__init__()
self.epsilon = epsilon
def forward(self, x):
return x * torch.rsqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.epsilon)
class Upscale2d(nn.Module):
@staticmethod
def upscale2d(x, factor=2, gain=1):
assert x.dim() == 4
if gain != 1:
x = x * gain
if factor != 1:
shape = x.shape
x = x.view(shape[0], shape[1], shape[2], 1, shape[3], 1).expand(-1, -1, -1, factor, -1, factor)
x = x.contiguous().view(shape[0], shape[1], factor * shape[2], factor * shape[3])
return x
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.gain = gain
self.factor = factor
def forward(self, x):
return self.upscale2d(x, factor=self.factor, gain=self.gain)
class Downscale2d(nn.Module):
def __init__(self, factor=2, gain=1):
super().__init__()
assert isinstance(factor, int) and factor >= 1
self.factor = factor
self.gain = gain
if factor == 2:
f = [np.sqrt(gain) / factor] * factor
self.blur = BlurLayer(kernel=f, normalize=False, stride=factor)
else:
self.blur = None
def forward(self, x):
assert x.dim() == 4
# 2x2, float32 => downscale using _blur2d().
if self.blur is not None and x.dtype == torch.float32:
return self.blur(x)
# Apply gain.
if self.gain != 1:
x = x * self.gain
# No-op => early exit.
if self.factor == 1:
return x
# Large factor => downscale using tf.nn.avg_pool().
# NOTE: Requires tf_config['graph_options.place_pruned_graph']=True to work.
return F.avg_pool2d(x, self.factor)
class EqualizedLinear(nn.Module):
"""Linear layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_size, output_size, gain=2 ** 0.5, use_wscale=False, lrmul=1, bias=True):
super().__init__()
he_std = gain * input_size ** (-0.5) # He init
# Equalized learning rate and custom learning rate multiplier.
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(torch.randn(output_size, input_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_size))
self.b_mul = lrmul
else:
self.bias = None
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
return F.linear(x, self.weight * self.w_mul, bias)
class EqualizedConv2d(nn.Module):
"""Conv layer with equalized learning rate and custom learning rate multiplier."""
def __init__(self, input_channels, output_channels, kernel_size, stride=1, gain=2 ** 0.5, use_wscale=False,
lrmul=1, bias=True, intermediate=None, upscale=False, downscale=False):
super().__init__()
if upscale:
self.upscale = Upscale2d()
else:
self.upscale = None
if downscale:
self.downscale = Downscale2d()
else:
self.downscale = None
he_std = gain * (input_channels * kernel_size ** 2) ** (-0.5) # He init
self.kernel_size = kernel_size
if use_wscale:
init_std = 1.0 / lrmul
self.w_mul = he_std * lrmul
else:
init_std = he_std / lrmul
self.w_mul = lrmul
self.weight = torch.nn.Parameter(
torch.randn(output_channels, input_channels, kernel_size, kernel_size) * init_std)
if bias:
self.bias = torch.nn.Parameter(torch.zeros(output_channels))
self.b_mul = lrmul
else:
self.bias = None
self.intermediate = intermediate
def forward(self, x):
bias = self.bias
if bias is not None:
bias = bias * self.b_mul
have_convolution = False
if self.upscale is not None and min(x.shape[2:]) * 2 >= 128:
# this is the fused upscale + conv from StyleGAN, sadly this seems incompatible with the non-fused way
# this really needs to be cleaned up and go into the conv...
w = self.weight * self.w_mul
w = w.permute(1, 0, 2, 3)
# probably applying a conv on w would be more efficient. also this quadruples the weight (average)?!
w = F.pad(w, [1, 1, 1, 1])
w = w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]
x = F.conv_transpose2d(x, w, stride=2, padding=(w.size(-1) - 1) // 2)
have_convolution = True
elif self.upscale is not None:
x = self.upscale(x)
downscale = self.downscale
intermediate = self.intermediate
if downscale is not None and min(x.shape[2:]) >= 128:
w = self.weight * self.w_mul
w = F.pad(w, [1, 1, 1, 1])
# in contrast to upscale, this is a mean...
w = (w[:, :, 1:, 1:] + w[:, :, :-1, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, :-1]) * 0.25 # avg_pool?
x = F.conv2d(x, w, stride=2, padding=(w.size(-1) - 1) // 2)
have_convolution = True
downscale = None
elif downscale is not None:
assert intermediate is None
intermediate = downscale
if not have_convolution and intermediate is None:
return F.conv2d(x, self.weight * self.w_mul, bias, padding=self.kernel_size // 2)
elif not have_convolution:
x = F.conv2d(x, self.weight * self.w_mul, None, padding=self.kernel_size // 2)
if intermediate is not None:
x = intermediate(x)
if bias is not None:
x = x + bias.view(1, -1, 1, 1)
return x
class NoiseLayer(nn.Module):
"""adds noise. noise is per pixel (constant over channels) with per-channel weight"""
def __init__(self, channels):
super().__init__()
self.weight = nn.Parameter(torch.zeros(channels))
self.noise = None
def forward(self, x, noise=None):
if noise is None and self.noise is None:
noise = torch.randn(x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype)
elif noise is None:
# here is a little trick: if you get all the noise layers and set each
# modules .noise attribute, you can have pre-defined noise.
# Very useful for analysis
noise = self.noise
x = x + self.weight.view(1, -1, 1, 1) * noise
return x
class StyleMod(nn.Module):
def __init__(self, latent_size, channels, use_wscale):
super(StyleMod, self).__init__()
self.lin = EqualizedLinear(latent_size,
channels * 2,
gain=1.0, use_wscale=use_wscale)
def forward(self, x, latent):
style = self.lin(latent) # style => [batch_size, n_channels*2]
shape = [-1, 2, x.size(1)] + (x.dim() - 2) * [1]
style = style.view(shape) # [batch_size, 2, n_channels, ...]
x = x * (style[:, 0] + 1.) + style[:, 1]
return x
class LayerEpilogue(nn.Module):
"""Things to do at the end of each layer."""
def __init__(self, channels, dlatent_size, use_wscale,
use_noise, use_pixel_norm, use_instance_norm, use_styles, activation_layer):
super().__init__()
layers = []
if use_noise:
layers.append(('noise', NoiseLayer(channels)))
layers.append(('activation', activation_layer))
if use_pixel_norm:
layers.append(('pixel_norm', PixelNormLayer()))
if use_instance_norm:
layers.append(('instance_norm', nn.InstanceNorm2d(channels)))
self.top_epi = nn.Sequential(OrderedDict(layers))
if use_styles:
self.style_mod = StyleMod(dlatent_size, channels, use_wscale=use_wscale)
else:
self.style_mod = None
def forward(self, x, dlatents_in_slice=None):
x = self.top_epi(x)
if self.style_mod is not None:
x = self.style_mod(x, dlatents_in_slice)
else:
assert dlatents_in_slice is None
return x
class BlurLayer(nn.Module):
def __init__(self, kernel=None, normalize=True, flip=False, stride=1):
super(BlurLayer, self).__init__()
if kernel is None:
kernel = [1, 2, 1]
kernel = torch.tensor(kernel, dtype=torch.float32)
kernel = kernel[:, None] * kernel[None, :]
kernel = kernel[None, None]
if normalize:
kernel = kernel / kernel.sum()
if flip:
kernel = kernel[:, :, ::-1, ::-1]
self.register_buffer('kernel', kernel)
self.stride = stride
def forward(self, x):
# expand kernel channels
kernel = self.kernel.expand(x.size(1), -1, -1, -1)
x = F.conv2d(
x,
kernel,
stride=self.stride,
padding=int((self.kernel.size(2) - 1) / 2),
groups=x.size(1)
)
return x
class View(nn.Module):
def __init__(self, *shape):
super().__init__()
self.shape = shape
def forward(self, x):
return x.view(x.size(0), *self.shape)
class StddevLayer(nn.Module):
def __init__(self, group_size=4, num_new_features=1):
super().__init__()
self.group_size = group_size
self.num_new_features = num_new_features
def forward(self, x):
b, c, h, w = x.shape
group_size = min(self.group_size, b)
y = x.reshape([group_size, -1, self.num_new_features,
c // self.num_new_features, h, w])
y = y - y.mean(0, keepdim=True)
y = (y ** 2).mean(0, keepdim=True)
y = (y + 1e-8) ** 0.5
y = y.mean([3, 4, 5], keepdim=True).squeeze(3) # don't keep the meaned-out channels
y = y.expand(group_size, -1, -1, h, w).clone().reshape(b, self.num_new_features, h, w)
z = torch.cat([x, y], dim=1)
return z
class Truncation(nn.Module):
def __init__(self, avg_latent, max_layer=8, threshold=0.7, beta=0.995):
super().__init__()
self.max_layer = max_layer
self.threshold = threshold
self.beta = beta
self.register_buffer('avg_latent', avg_latent)
def update(self, last_avg):
self.avg_latent.copy_(self.beta * self.avg_latent + (1. - self.beta) * last_avg)
def forward(self, x):
assert x.dim() == 3
interp = torch.lerp(self.avg_latent, x, self.threshold)
do_trunc = (torch.arange(x.size(1)) < self.max_layer).view(1, -1, 1).to(x.device)
return torch.where(do_trunc, interp, x)