-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseamless.bib
559 lines (515 loc) · 21.5 KB
/
seamless.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
@inproceedings{hui2018liteflownet,
title={Liteflownet: A lightweight convolutional neural network for optical flow estimation},
author={Hui, Tak-Wai and Tang, Xiaoou and Change Loy, Chen},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={8981--8989},
year={2018}
}
@inproceedings{ranjan2017optical,
title={Optical Flow Estimation Using a Spatial Pyramid Network},
author={Ranjan, Anurag and Black, Michael J},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={4161--4170},
year={2017}
}
@article{saalfeld2012elastic,
title={Elastic volume reconstruction from series of ultra-thin microscopy sections},
author={Saalfeld, Stephan and Fetter, Richard and Cardona, Albert and Tomancak, Pavel},
journal={Nature methods},
volume={9},
number={7},
pages={717},
year={2012},
publisher={Nature Publishing Group}
}
@article{balakrishnan2018unsupervised,
title={An Unsupervised Learning Model for Deformable Medical Image Registration},
author={Balakrishnan, Guha and Zhao, Amy and Sabuncu, Mert R and Guttag, John and Dalca, Adrian V},
journal={arXiv preprint arXiv:1802.02604},
year={2018}
}
@incollection{yoo2017ssemnet,
title={ssEMnet: Serial-section Electron Microscopy Image Registration using a Spatial Transformer Network with Learned Features},
author={Yoo, Inwan and Hildebrand, David GC and Tobin, Willie F and Lee, Wei-Chung Allen and Jeong, Won-Ki},
booktitle={Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support},
pages={249--257},
year={2017},
publisher={Springer}
}
@article{zheng2017complete,
title={A complete electron microscopy volume of the brain of adult Drosophila melanogaster},
author={Zheng, Zhihao and Lauritzen, J Scott and Perlman, Eric and Robinson, Camenzind G and Nichols, Matthew and Milkie, Daniel and Torrens, Omar and Price, John and Fisher, Corey B and Sharifi, Nadiya and others},
journal={BioRxiv},
pages={140905},
year={2017},
publisher={Cold Spring Harbor Laboratory}
}
@InProceedings{garcia2007quality,
title = {TOWARDS OBJECTIVE QUALITY ASSESSMENT OF
IMAGE REGISTRATION RESULTS},
author = {Birgit Moller and Rafael Garcia},
booktitle = {International Conference on Computer Vision Theory and Applications},
year = {2007},
publisher = {VISAPP},
pdf = {http://users.informatik.uni-halle.de/~moeller/pubs/pdf/Moeller07_VISAPP.pdf},
url = {http://users.informatik.uni-halle.de/~moeller/pubs/pdf/Moeller07_VISAPP.pdf},
}
@article{flownet,
author = {Philipp Fischer and
Alexey Dosovitskiy and
Eddy Ilg and
Philip H{\"{a}}usser and
Caner Hazirbas and
Vladimir Golkov and
Patrick van der Smagt and
Daniel Cremers and
Thomas Brox},
title = {FlowNet: Learning Optical Flow with Convolutional Networks},
journal = {CoRR},
volume = {abs/1504.06852},
year = {2015},
url = {http://arxiv.org/abs/1504.06852},
archivePrefix = {arXiv},
eprint = {1504.06852},
timestamp = {Wed, 07 Jun 2017 14:41:04 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/FischerDIHHGSCB15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{chopra2005learning,
title={Learning a similarity metric discriminatively, with application to face verification},
author={Chopra, Sumit and Hadsell, Raia and LeCun, Yann},
booktitle={Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on},
volume={1},
pages={539--546},
year={2005},
organization={IEEE}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@incollection{GANs,
title = {Generative Adversarial Nets},
author = {Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
booktitle = {Advances in Neural Information Processing Systems 27},
editor = {Z. Ghahramani and M. Welling and C. Cortes and N. D. Lawrence and K. Q. Weinberger},
pages = {2672--2680},
year = {2014},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf}
}
@misc{tommy,
author = "Macrina, Tommy",
date = "2018-02-07",
howpublished = "personal communication"
}
@article{UNet,
author = {Olaf Ronneberger and
Philipp Fischer and
Thomas Brox},
title = {U-Net: Convolutional Networks for Biomedical Image Segmentation},
journal = {CoRR},
volume = {abs/1505.04597},
year = {2015},
url = {http://arxiv.org/abs/1505.04597},
archivePrefix = {arXiv},
eprint = {1505.04597},
timestamp = {Wed, 07 Jun 2017 14:40:33 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/RonnebergerFB15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{paszke2017automatic,
title={Automatic differentiation in PyTorch},
author={Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and Yang, Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and Antiga, Luca and Lerer, Adam},
booktitle={NIPS-W},
year={2017}
}
@inproceedings{maas2013rectifier,
title={Rectifier nonlinearities improve neural network acoustic models},
author={Maas, Andrew L and Hannun, Awni Y and Ng, Andrew Y},
booktitle={Proc. icml},
volume={30},
pages={3},
year={2013}
}
@inproceedings{metric,
doi = {10.1117/12.840389},
url = {https://doi.org/10.1117/12.840389},
year = {2010},
month = {mar},
publisher = {{SPIE}},
author = {A. Melbourne and G. Ridgway and D. J. Hawkes},
editor = {Benoit M. Dawant and David R. Haynor},
title = {Image similarity metrics in image registration},
booktitle = {Medical Imaging 2010: Image Processing}
}
@article{rectifier,
author = {Kaiming He and
Xiangyu Zhang and
Shaoqing Ren and
Jian Sun},
title = {Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification},
journal = {CoRR},
volume = {abs/1502.01852},
year = {2015},
url = {http://arxiv.org/abs/1502.01852},
archivePrefix = {arXiv},
eprint = {1502.01852},
timestamp = {Wed, 07 Jun 2017 14:41:19 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HeZR015},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{quality,
title = {TOWARDS OBJECTIVE QUALITY ASSESSMENT OF
IMAGE REGISTRATION RESULTS},
author = {Birgit Moller, Rafael Garcia},
booktitle = {International Conference on Computer Vision Theory and Applications},
year = {2007},
publisher = {VISAPP},
pdf = {http://users.informatik.uni-halle.de/~moeller/pubs/pdf/Moeller07_VISAPP.pdf},
url = {http://users.informatik.uni-halle.de/~moeller/pubs/pdf/Moeller07_VISAPP.pdf},
}
@InProceedings{Glorot,
title = {Understanding the difficulty of training deep feedforward neural networks},
author = {Xavier Glorot and Yoshua Bengio},
booktitle = {Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics},
pages = {249--256},
year = {2010},
editor = {Yee Whye Teh and Mike Titterington},
volume = {9},
series = {Proceedings of Machine Learning Research},
address = {Chia Laguna Resort, Sardinia, Italy},
month = {13--15 May},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf},
url = {http://proceedings.mlr.press/v9/glorot10a.html},
abstract = {Whereas before 2006 it appears that deep multi-layer neural networks were not successfully trained, since then several algorithms have been shown to successfully train them, with experimental results showing the superiority of deeper vs less deep architectures. All these experimental results were obtained with new initialization or training mechanisms. Our objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future. We first observe the influence of the non-linear activations functions. We find that the logistic sigmoid activation is unsuited for deep networks with random initialization because of its mean value, which can drive especially the top hidden layer into saturation. Surprisingly, we find that saturated units can move out of saturation by themselves, albeit slowly, and explaining the plateaus sometimes seen when training neural networks. We find that a new non-linearity that saturates less can often be beneficial. Finally, we study how activations and gradients vary across layers and during training, with the idea that training may be more difficult when the singular values of the Jacobian associated with each layer are far from 1. Based on these considerations, we propose a new initialization scheme that brings substantially faster convergence.}
}
@incollection{burt1987laplacian,
title={The Laplacian pyramid as a compact image code},
author={Burt, Peter J and Adelson, Edward H},
booktitle={Readings in Computer Vision},
pages={671--679},
year={1987},
publisher={Elsevier}
}
@ARTICLE{jain:2016,
author = {{Jain}, V.},
title = "{Adversarial Image Alignment and Interpolation}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1707.00067},
primaryClass = "cs.CV",
keywords = {Computer Science - Computer Vision and Pattern Recognition},
year = 2017,
month = jun,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170700067J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@MISC{eyewire,
author = {{EyeWire}},
title = {Carl Zimmer writes about EyeWire in Discover Magazine},
year = {2012},
note = {[Online; accessed May 2, 2018]},
url = {http://blog.eyewire.org/brain-connections-may-be-key/}
}
@article{fukushima:neocognitronbc,
added-at = {2008-03-11T14:52:34.000+0100},
author = {Fukushima, Kunihiko},
biburl = {https://www.bibsonomy.org/bibtex/29ecd878c4827c46dab6b9622cfa00072/idsia},
citeulike-article-id = {2376719},
interhash = {303975e6400e477e91c91e7dc2c47544},
intrahash = {9ecd878c4827c46dab6b9622cfa00072},
journal = {Biological Cybernetics},
keywords = {nn},
pages = {193--202},
priority = {2},
timestamp = {2008-03-11T15:04:22.000+0100},
title = {{N}eocognitron: {A} Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position},
volume = 36,
year = 1980
}
@article{ResNet,
author = {Kaiming He and
Xiangyu Zhang and
Shaoqing Ren and
Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {CoRR},
volume = {abs/1512.03385},
year = {2015},
url = {http://arxiv.org/abs/1512.03385},
archivePrefix = {arXiv},
eprint = {1512.03385},
timestamp = {Wed, 07 Jun 2017 14:41:17 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HeZRS15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{brainneurons,
doi = {10.3389/neuro.09.031.2009},
url = {https://doi.org/10.3389/neuro.09.031.2009},
year = {2009},
publisher = {Frontiers Media {SA}},
volume = {3},
author = {Suzana Herculano-Houzel},
title = {The human brain in numbers: a linearly scaled-up primate brain},
journal = {Frontiers in Human Neuroscience}
}
@article{ynot,
doi = {10.1038/nmeth.2480},
url = {https://doi.org/10.1038/nmeth.2480},
year = {2013},
month = {jun},
publisher = {Springer Nature},
volume = {10},
number = {6},
pages = {494--500},
author = {Joshua L Morgan and Jeff W Lichtman},
title = {Why not connectomics?},
journal = {Nature Methods}
}
@article{brainsynapses,
doi = {10.5038/2326-3652.3.1.26},
url = {https://doi.org/10.5038/2326-3652.3.1.26},
year = {2013},
month = {may},
publisher = {University of South Florida Libraries},
volume = {3},
number = {1},
author = {Thai Nguyen},
title = {Total Number of Synapses in the Adult Human Neocortex},
journal = {Undergraduate Journal of Mathematical Modeling: One $+$ Two}
}
@article{CElegans,
doi = {10.1098/rstb.1986.0056},
url = {https://doi.org/10.1098/rstb.1986.0056},
year = {1986},
month = {nov},
publisher = {The Royal Society},
volume = {314},
number = {1165},
pages = {1--340},
author = {J. G. White and E. Southgate and J. N. Thomson and S. Brenner},
title = {The Structure of the Nervous System of the Nematode Caenorhabditis elegans},
journal = {Philosophical Transactions of the Royal Society B: Biological Sciences}
}
@incollection{AlexNet,
title = {ImageNet Classification with Deep Convolutional Neural Networks},
author = {Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger},
pages = {1097--1105},
year = {2012},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf}
}
@incollection{LeCun1999,
doi = {10.1007/3-540-46805-6\_19},
url = {https://doi.org/10.1007/3-540-46805-6\_19},
year = {1999},
publisher = {Springer Berlin Heidelberg},
pages = {319--345},
author = {Yann LeCun and Patrick Haffner and L{\'{e}}on Bottou and Yoshua Bengio},
title = {Object Recognition with Gradient-Based Learning},
booktitle = {Shape, Contour and Grouping in Computer Vision}
}
@ARTICLE{jaderberg:2015,
author = {{Jaderberg}, M. and {Simonyan}, K. and {Zisserman}, A. and {Kavukcuoglu}, K.
},
title = "{Spatial Transformer Networks}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1506.02025},
primaryClass = "cs.CV",
keywords = {Computer Science - Computer Vision and Pattern Recognition},
year = 2015,
month = jun,
adsurl = {http://adsabs.harvard.edu/abs/2015arXiv150602025J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{receptivefield,
author = {Wenjie Luo and
Yujia Li and
Raquel Urtasun and
Richard S. Zemel},
title = {Understanding the Effective Receptive Field in Deep Convolutional
Neural Networks},
journal = {CoRR},
volume = {abs/1701.04128},
year = {2017},
url = {http://arxiv.org/abs/1701.04128},
archivePrefix = {arXiv},
eprint = {1701.04128},
timestamp = {Wed, 07 Jun 2017 14:41:26 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LuoLUZ17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@ARTICLE{tv,
author={V. Vishnevskiy and T. Gass and G. Szekely and C. Tanner and O. Goksel},
journal={IEEE Transactions on Medical Imaging},
title={Isotropic Total Variation Regularization of Displacements in Parametric Image Registration},
year={2017},
volume={36},
number={2},
pages={385-395},
keywords={biomedical MRI;image registration;lung;medical image processing;pneumodynamics;time series;ADMM;Alternating Directions Method of Multipliers;CT lung images;MR liver images;Tikhonov regularization;abdomen;average target registration error;breathing motion databases;clinical databases;displacements;ill-posed problem;image time-series;implausible displacement fields;isotropic total variation regularization;local minima;nonsmooth displacement fields;optimization;organ masks;parametric image registration;respiration;sliding interfaces;spatial regularization;thorax;Databases;Image registration;Lungs;Measurement;Motion segmentation;Optimization;TV;4DCT;4DMR;ADMM;breathing motion;sliding at anatomical interfaces;Algorithms;Four-Dimensional Computed Tomography;Motion},
doi={10.1109/TMI.2016.2610583},
ISSN={0278-0062},
month={Feb},}
@article{fcnnet,
author = {Hongming Li and
Yong Fan},
title = {Non-rigid image registration using fully convolutional networks with
deep self-supervision},
journal = {CoRR},
volume = {abs/1709.00799},
year = {2017},
url = {http://arxiv.org/abs/1709.00799},
archivePrefix = {arXiv},
eprint = {1709.00799},
timestamp = {Sun, 24 Dec 2017 01:07:47 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1709-00799},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@ARTICLE{Wu:2016,
author={G. Wu and M. Kim and Q. Wang and B. C. Munsell and D. Shen},
journal={IEEE Transactions on Biomedical Engineering},
title={Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning},
year={2016},
volume={63},
number={7},
pages={1505-1516},
keywords={Biomedical imaging;Feature extraction;Image registration;Machine learning;Three-dimensional displays;Unsupervised learning;Deep learning;Deformable image registration;deep learning;deformable image registration;hierarchical feature representation;Algorithms;Brain;Humans;Image Processing, Computer-Assisted;Magnetic Resonance Imaging;Unsupervised Machine Learning},
doi={10.1109/TBME.2015.2496253},
ISSN={0018-9294},
month={July}
}
@article{Unflow,
author = {Simon Meister and
Junhwa Hur and
Stefan Roth},
title = {UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional
Census Loss},
journal = {CoRR},
volume = {abs/1711.07837},
year = {2017},
url = {http://arxiv.org/abs/1711.07837},
archivePrefix = {arXiv},
eprint = {1711.07837},
timestamp = {Thu, 14 Dec 2017 17:11:48 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1711-07837},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{E2E,
author = {Siyuan Shan and
Xiaoqing Guo and
Wen Yan and
Eric I{-}Chao Chang and
Yubo Fan and
Yan Xu},
title = {Unsupervised End-to-end Learning for Deformable Medical Image Registration},
journal = {CoRR},
volume = {abs/1711.08608},
year = {2017},
url = {http://arxiv.org/abs/1711.08608},
archivePrefix = {arXiv},
eprint = {1711.08608},
timestamp = {Sun, 03 Dec 2017 12:38:15 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1711-08608},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{SpyNet2,
author = {Armand Zampieri and
Guillaume Charpiat and
Yuliya Tarabalka},
title = {Coarse to fine non-rigid registration: a chain of scale-specific neural
networks for multimodal image alignment with application to remote
sensing},
journal = {CoRR},
volume = {abs/1802.09816},
year = {2018},
url = {http://arxiv.org/abs/1802.09816},
archivePrefix = {arXiv},
eprint = {1802.09816},
timestamp = {Fri, 02 Mar 2018 13:46:22 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1802-09816},
bibsource = {dblp computer science bibliography, https://dblp.org}
}`
@article{FlowNet2,
author = {Eddy Ilg and
Nikolaus Mayer and
Tonmoy Saikia and
Margret Keuper and
Alexey Dosovitskiy and
Thomas Brox},
title = {FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks},
journal = {CoRR},
volume = {abs/1612.01925},
year = {2016},
url = {http://arxiv.org/abs/1612.01925},
archivePrefix = {arXiv},
eprint = {1612.01925},
timestamp = {Wed, 07 Jun 2017 14:41:53 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/IlgMSKDB16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{WarpNet,
author = {Angjoo Kanazawa and
David W. Jacobs and
Manmohan Chandraker},
title = {WarpNet: Weakly Supervised Matching for Single-view Reconstruction},
journal = {CoRR},
volume = {abs/1604.05592},
year = {2016},
url = {http://arxiv.org/abs/1604.05592},
archivePrefix = {arXiv},
eprint = {1604.05592},
timestamp = {Wed, 07 Jun 2017 14:41:08 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/KanazawaJC16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{saalfeld:2012,
Author = {Saalfeld, Stephan and Fetter, Richard and Cardona, Albert and Tomancak, Pavel},
Date = {2012/06/10/online},
Date-Added = {2018-03-02 23:30:16 +0000},
Date-Modified = {2018-03-02 23:30:16 +0000},
Day = {10},
Journal = {Nature Methods},
L3 = {10.1038/nmeth.2072; https://www.nature.com/articles/nmeth.2072#supplementary-information},
Month = {06},
Pages = {717 EP -},
Publisher = {Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. SN -},
Title = {Elastic volume reconstruction from series of ultra-thin microscopy sections},
Ty = {JOUR},
Url = {http://dx.doi.org/10.1038/nmeth.2072},
Volume = {9},
Year = {2012},
Bdsk-Url-1 = {http://dx.doi.org/10.1038/nmeth.2072}}
@inproceedings{luo2016efficient,
title={Efficient deep learning for stereo matching},
author={Luo, Wenjie and Schwing, Alexander G and Urtasun, Raquel},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5695--5703},
year={2016}
}
@inproceedings{revaud2015epicflow,
title={Epicflow: Edge-preserving interpolation of correspondences for optical flow},
author={Revaud, Jerome and Weinzaepfel, Philippe and Harchaoui, Zaid and Schmid, Cordelia},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={1164--1172},
year={2015}
}
@inproceedings{weinzaepfel2013deepflow,
title={DeepFlow: Large displacement optical flow with deep matching},
author={Weinzaepfel, Philippe and Revaud, Jerome and Harchaoui, Zaid and Schmid, Cordelia},
booktitle={Computer Vision (ICCV), 2013 IEEE International Conference on},
pages={1385--1392},
year={2013},
organization={IEEE}
}
@inproceedings{yoo2015multi,
title={Multi-scale pyramid pooling for deep convolutional representation},
author={Yoo, Donggeun and Park, Sunggyun and Lee, Joon-Young and Kweon, In So},
booktitle={Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 IEEE Conference on},
pages={71--80},
year={2015},
organization={IEEE}
}