-
Notifications
You must be signed in to change notification settings - Fork 0
/
free_group_isomorphism.saty
77 lines (75 loc) · 3.37 KB
/
free_group_isomorphism.saty
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
@require: stdjabook
@require: code
@require: itemize
@require: tabular
@require: math
@import: local
let-math \group-gen m1 m2 =
${\angle-bracket{#m1 \| #m2}}
let-math \Z = ${\math-style!(MathDoubleStruck){Z}}
let-math \fA = ${\alpha^3}
let-math \fB = ${\beta\alpha^{-2}}
let-math \fC = ${\alpha\beta}
let-math \fD = ${\alpha^2\beta\alpha^{-1}}
in
document (|
title = {自由群${F_4}から${F_2}への、とある準同型写像};
author = {hsjoihs};
show-title = true;
show-toc = false;
|) '<
+section{問題}<
+p{
自由群${F_4 : \group-gen{A,B,C,D}{} } と ${F_2 : \group-gen{\alpha, \beta}{}} があり、
準同型写像 ${f : F_4 \arrow F_2} が
${\app{f}{A} = \fA},
${\app{f}{B} = \fB},
${\app{f}{C} = \fC},
${\app{f}{D} = \fD} によって定まるとき、
}
+listing{
* ${\app{f}{F_4}} は ${F_2} の正規部分群
* ${F_2 / \app{f}{F_4} \simeq \Z / 3\Z}
}
+pn{
であることを示せ。
}
>
+section{「${\app{f}{F_4}} は ${F_2} の正規部分群である」の略解}<
+p{
示すべきことは、${
\all n \in \app{f}{F_4}, \all g \in F_2, gng^{-1} \in \app{f}{F_4}
} である。ところで、
\align[
${| \alpha \app{f}{A} \alpha^{-1} |=| \alpha \fA \alpha^{-1} |=| \fA |=| \app{f}{A}|};
${| \alpha \app{f}{B} \alpha^{-1} |=| \alpha \fB \alpha^{-1} |=| \fC\paren{\fA}^{-1} |=| \app{f}{CA^{-1}} |};
${| \alpha \app{f}{C} \alpha^{-1} |=| \alpha \fC \alpha^{-1} |=| \fD |=| \app{f}{D} |};
${| \alpha \app{f}{D} \alpha^{-1} |=| \alpha \fD \alpha^{-1} |=| \fA\fB |=| \app{f}{AB} |};
${| \beta \app{f}{A} \beta^{-1} |=| \beta \fA \beta^{-1} |=| \fB\fA\paren{\fB}^{-1} |=| \app{f}{BAB^{-1}}|};
${| \beta \app{f}{B} \beta^{-1} |=| \beta \fB \beta^{-1} |=| \fB\fD\paren{\fA}^{-1}\paren{\fB}^{-1} |=| \app{f}{BDA^{-1}B^{-1}} |};
${| \beta \app{f}{C} \beta^{-1} |=| \beta \fC \beta^{-1} |=| \fB\fA |=| \app{f}{BA} |};
${| \beta \app{f}{D} \beta^{-1} |=| \beta \fD \beta^{-1} |=| \fB\fA\fC\paren{\fA}^{-1}\paren{\fB}^{-1}|=| \app{f}{BACA^{-1}B^{-1}} |};
${| \alpha^{-1} \app{f}{A} \alpha |=| \alpha^{-1} \fA \alpha |=| \fA |=| \app{f}{A}|};
${| \alpha^{-1} \app{f}{B} \alpha |=| \alpha^{-1} \fB \alpha |=| \paren{\fA}^{-1}\fD |=| \app{f}{A^{-1}D}|};
${| \alpha^{-1} \app{f}{C} \alpha |=| \alpha^{-1} \fC \alpha |=| \fB\fA |=| \app{f}{BA}|};
${| \alpha^{-1} \app{f}{D} \alpha |=| \alpha^{-1} \fD \alpha |=| \fC |=| \app{f}{C}|};
${| \beta^{-1} \app{f}{A} \beta |=| \beta^{-1} \fA \beta |=| \paren{\fC}^{-1}\fA\fC |=| \app{f}{C^{-1}AC}|};
${| \beta^{-1} \app{f}{B} \beta |=| \beta^{-1} \fB \beta |=| \paren{\fA}^{-1}\fC |=| \app{f}{A^{-1}C}|};
${| \beta^{-1} \app{f}{C} \beta |=| \beta^{-1} \fC \beta |=| \paren{\fC}^{-1}\fD\fC |=| \app{f}{C^{-1}DC}|};
${| \beta^{-1} \app{f}{D} \beta |=| \beta^{-1} \fD \beta |=| \paren{\fC}^{-1}\fA\fB\fC |=| \app{f}{C^{-1}ABC}|};
];%
なので、${F_2}の任意の要素が${\alpha}・${\beta}・${\alpha^{-1}}・${\beta^{-1}}の積で書ける以上、
}
+math(${
\all n \in \app{f}{F_4}, \all g \in F_2, gng^{-1} \in \app{f}{F_4}
});
+pn{
は成り立つ。
}
>
+section{「${F_2 / \app{f}{F_4} \simeq \Z / 3\Z}」の略解}<
+p{
まだ解いてない。
}
>
>