Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VFPU: Compute sines and cosines in double precision. #13526

Merged
merged 1 commit into from
Oct 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 22 additions & 41 deletions Core/MIPS/MIPSVFPUUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,67 +29,48 @@ inline int Xpose(int v) {
return v^0x20;
}

// Half of PI, or 90 degrees.
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#endif

// Some games depend on exact values, but sinf() and cosf() aren't always precise.
// The VFPU uses weird angles where 4.0 represents a full circle. This makes it possible to return
// exact 1.0/-1.0 values at certain angles. We get close enough for #2921 and #12900 by computing
// things in double precision, multiplying the input by pi/2.
//
// A better solution would be to tailor some sine approximation for the 0..90 degrees range, compute
// modulo manually and mirror that around the circle. Also correctly special casing for inf/nan inputs
// and just trying to match it as closely as possible to the real PSP.
//
// Stepping down to [0, 2pi) helps, but we also check common exact-result values.
// TODO: cos(1) and sin(2) should be -0.0, but doing that gives wrong results (possibly from floorf.)

// Messing around with the modulo functions? try https://www.desmos.com/calculator.

inline float vfpu_sin(float angle) {
angle -= floorf(angle * 0.25f) * 4.f;
if (angle == 0.0f || angle == 2.0f) {
return 0.0f;
} else if (angle == 1.0f) {
return 1.0f;
} else if (angle == 3.0f) {
return -1.0f;
}
angle *= (float)M_PI_2;
return sinf(angle);
return (float)sin((double)angle * M_PI_2);
}

inline float vfpu_cos(float angle) {
angle -= floorf(angle * 0.25f) * 4.f;
if (angle == 1.0f || angle == 3.0f) {
return 0.0f;
} else if (angle == 0.0f) {
return 1.0f;
} else if (angle == 2.0f) {
return -1.0f;
}
angle *= (float)M_PI_2;
return cosf(angle);
return (float)cos((double)angle * M_PI_2);
}

inline float vfpu_asin(float angle) {
return asinf(angle) / M_PI_2;
}

inline void vfpu_sincos(float angle, float &sine, float &cosine) {
angle -= floorf(angle * 0.25f) * 4.f;
if (angle == 0.0f) {
sine = 0.0f;
cosine = 1.0f;
} else if (angle == 1.0f) {
sine = 1.0f;
cosine = 0.0f;
} else if (angle == 2.0f) {
sine = 0.0f;
cosine = -1.0f;
} else if (angle == 3.0f) {
sine = -1.0f;
cosine = 0.0f;
} else {
angle *= (float)M_PI_2;
inline void vfpu_sincos(float angle_f, float &sine, float &cosine) {
double angle = (double)angle_f * M_PI_2;
#if defined(__linux__)
sincosf(angle, &sine, &cosine);
double d_sine;
double d_cosine;
sincos(angle, &d_sine, &d_cosine);
sine = (float)d_sine;
cosine = (float)d_cosine;
#else
sine = sinf(angle);
cosine = cosf(angle);
sine = (float)sin(angle);
cosine = (float)cos(angle);
#endif
}
}

inline float vfpu_clamp(float v, float min, float max) {
Expand Down
14 changes: 13 additions & 1 deletion unittest/UnitTest.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,9 @@
//
// TODO: Make a test of nice unittest asserts and count successes etc.
// Or just integrate with an existing testing framework.
//
// To use, set command line parameter to one or more of the tests below, or "all".
// Search for "availableTests".

#include <cstdio>
#include <cstdlib>
Expand Down Expand Up @@ -308,10 +311,19 @@ bool TestVFPUSinCos() {
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);

for (float angle = -10.0f; angle < 10.0f; angle++) {
vfpu_sincos(-1.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, -1.0f);
EXPECT_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(-2.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, -1.0f);

for (float angle = -10.0f; angle < 10.0f; angle += 0.1f) {
vfpu_sincos(angle, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, sinf(angle * M_PI_2));
EXPECT_APPROX_EQ_FLOAT(cosine, cosf(angle * M_PI_2));

printf("sine: %f==%f cosine: %f==%f\n", sine, sinf(angle * M_PI_2), cosine, cosf(angle * M_PI_2));
}
return true;
}
Expand Down