-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
268 lines (243 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import numpy as np
import os
import torch
import torch.nn as nn
import torch.utils.data as Data
from torch.nn import functional as F
import utils.transforms as trans
import utils.utils as util
import layer.loss as ls
import utils.metric as mc
import shutil
import cv2
import cfg.BCDD as cfg
import dataset.rs as dates
import time
import datetime
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
resume = 0
def check_dir(dir):
if not os.path.exists(dir):
os.mkdir(dir)
def untransform(transform_img, mean_vector):
transform_img = transform_img.transpose(1, 2, 0)
transform_img += mean_vector
transform_img = transform_img.astype(np.uint8)
transform_img = transform_img[:, :, ::-1]
return transform_img
def various_distance(out_vec_t0, out_vec_t1, dist_flag):
if dist_flag == 'l2':
distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2)
if dist_flag == 'l1':
distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=1)
if dist_flag == 'cos':
distance = 1 - F.cosine_similarity(out_vec_t0, out_vec_t1)
return distance
def single_layer_similar_heatmap_visual(output_t0, output_t1, save_change_map_dir, epoch, filename, layer_flag, dist_flag):
# interp = nn.functional.interpolate(size=[cfg.TRANSFROM_SCALES[1],cfg.TRANSFROM_SCALES[0]], mode='bilinear')
n, c, h, w = output_t0.data.shape
out_t0_rz = torch.transpose(output_t0.view(c, h * w), 1, 0)
out_t1_rz = torch.transpose(output_t1.view(c, h * w), 1, 0)
distance = various_distance(out_t0_rz, out_t1_rz, dist_flag=dist_flag)
similar_distance_map = distance.view(h, w).data.cpu().numpy()
similar_distance_map_rz = nn.functional.interpolate(torch.from_numpy(similar_distance_map[np.newaxis, np.newaxis, :]), size=[
cfg.TRANSFROM_SCALES[1], cfg.TRANSFROM_SCALES[0]], mode='bilinear', align_corners=True)
similar_dis_map_colorize = cv2.applyColorMap(np.uint8(
255 * similar_distance_map_rz.data.cpu().numpy()[0][0]), cv2.COLORMAP_JET)
save_change_map_dir_ = os.path.join(
save_change_map_dir, 'epoch_' + str(epoch))
check_dir(save_change_map_dir_)
save_change_map_dir_layer = os.path.join(save_change_map_dir_, layer_flag)
check_dir(save_change_map_dir_layer)
save_weight_fig_dir = os.path.join(
save_change_map_dir_layer, filename + '.jpg')
cv2.imwrite(save_weight_fig_dir, similar_dis_map_colorize)
return similar_distance_map_rz.data.cpu().numpy()
def validate(net, val_dataloader, epoch, save_change_map_dir, save_roc_dir):
net.eval()
with torch.no_grad():
cont_conv5_total, cont_fc_total, cont_embedding_total, num = 0.0, 0.0, 0.0, 0.0
metric_for_conditions = util.init_metric_for_class_for_cmu(1)
for batch_idx, batch in enumerate(val_dataloader):
inputs1, input2, targets, filename, height, width = batch
height, width, filename = height.numpy()[0], width.numpy()[
0], filename[0]
inputs1, input2, targets = inputs1.cuda(), input2.cuda(), targets.cuda()
out_conv5, out_fc, out_embedding = net(inputs1, input2)
out_conv5_t0, out_conv5_t1 = out_conv5
out_fc_t0, out_fc_t1 = out_fc
out_embedding_t0, out_embedding_t1 = out_embedding
conv5_distance_map = single_layer_similar_heatmap_visual(
out_conv5_t0, out_conv5_t1, save_change_map_dir, epoch, filename, 'conv5', 'l2')
fc_distance_map = single_layer_similar_heatmap_visual(
out_fc_t0, out_fc_t1, save_change_map_dir, epoch, filename, 'fc', 'l2')
embedding_distance_map = single_layer_similar_heatmap_visual(
out_embedding_t0, out_embedding_t1, save_change_map_dir, epoch, filename, 'embedding', 'l2')
cont_conv5 = mc.RMS_Contrast(conv5_distance_map)
cont_fc = mc.RMS_Contrast(fc_distance_map)
cont_embedding = mc.RMS_Contrast(embedding_distance_map)
cont_conv5_total += cont_conv5
cont_fc_total += cont_fc
cont_embedding_total += cont_embedding
num += 1
prob_change = embedding_distance_map[0][0]
gt = targets.data.cpu().numpy()
FN, FP, posNum, negNum = mc.eval_image_rewrite(
gt[0], prob_change, cl_index=1)
metric_for_conditions[0]['total_fp'] += FP
metric_for_conditions[0]['total_fn'] += FN
metric_for_conditions[0]['total_posnum'] += posNum
metric_for_conditions[0]['total_negnum'] += negNum
cont_conv5_mean, cont_fc_mean, cont_embedding_mean = cont_conv5_total/num, \
cont_fc_total/num, cont_embedding_total/num
thresh = np.array(range(0, 256)) / 255.0
conds = metric_for_conditions.keys()
for cond_name in conds:
total_posnum = metric_for_conditions[cond_name]['total_posnum']
total_negnum = metric_for_conditions[cond_name]['total_negnum']
total_fn = metric_for_conditions[cond_name]['total_fn']
total_fp = metric_for_conditions[cond_name]['total_fp']
metric_dict = mc.pxEval_maximizeFMeasure(total_posnum, total_negnum,
total_fn, total_fp, thresh=thresh)
metric_for_conditions[cond_name].setdefault('metric', metric_dict)
metric_for_conditions[cond_name].setdefault(
'contrast_conv5', cont_conv5_mean)
metric_for_conditions[cond_name].setdefault(
'contrast_fc', cont_fc_mean)
metric_for_conditions[cond_name].setdefault(
'contrast_embedding', cont_embedding_mean)
f_score_total = 0.0
for cond_name in conds:
pr, recall, f_score = metric_for_conditions[cond_name]['metric']['precision'], metric_for_conditions[
cond_name]['metric']['recall'], metric_for_conditions[cond_name]['metric']['MaxF']
roc_save_epoch_dir = os.path.join(save_roc_dir, str(epoch))
check_dir(roc_save_epoch_dir)
roc_save_epoch_cat_dir = os.path.join(roc_save_epoch_dir)
check_dir(roc_save_epoch_cat_dir)
mc.save_PTZ_metric2disk(
metric_for_conditions[cond_name], roc_save_epoch_cat_dir)
roc_save_dir = os.path.join(roc_save_epoch_cat_dir,
'_' + str(cond_name) + '_roc.png')
mc.plotPrecisionRecall(pr, recall, roc_save_dir, benchmark_pr=None)
f_score_total += f_score
print(f_score_total/(len(conds)))
return f_score_total/len(conds)
def main():
######### configs ###########
best_metric = 0
###### load datasets ########
train_transform_det = trans.Compose([
trans.Scale(cfg.TRANSFROM_SCALES),
])
val_transform_det = trans.Compose([
trans.Scale(cfg.TRANSFROM_SCALES),
])
train_data = dates.Dataset(cfg.TRAIN_DATA_PATH, cfg.TRAIN_LABEL_PATH,
cfg.TRAIN_TXT_PATH, 'train', transform=True,
transform_med=train_transform_det)
train_loader = Data.DataLoader(train_data, batch_size=128,
shuffle=True, num_workers=4, pin_memory=True)
val_data = dates.Dataset(cfg.VAL_DATA_PATH, cfg.VAL_LABEL_PATH,
cfg.VAL_TXT_PATH, 'val', transform=True,
transform_med=val_transform_det)
val_loader = Data.DataLoader(val_data, batch_size=cfg.BATCH_SIZE,
shuffle=False, num_workers=4, pin_memory=True)
###### build models ########
base_seg_model = 'resnet50'
if base_seg_model == 'vgg':
import model.siameseNet.d_aa as models
pretrain_deeplab_path = os.path.join(
cfg.PRETRAIN_MODEL_PATH, 'vgg16.pth')
model = models.SiameseNet(norm_flag='l2')
if resume:
checkpoint = torch.load(cfg.TRAINED_BEST_PERFORMANCE_CKPT)
model.load_state_dict(checkpoint['state_dict'])
print('resume success')
else:
deeplab_pretrain_model = torch.load(pretrain_deeplab_path)
model.init_parameters_from_deeplab(deeplab_pretrain_model)
print('load vgg')
else:
import model.siameseNet.dares as models
model = models.SiameseNet(norm_flag='l2')
if resume:
checkpoint = torch.load(cfg.TRAINED_BEST_PERFORMANCE_CKPT)
model.load_state_dict(checkpoint['state_dict'])
print('resume success')
else:
print('load resnet50')
model = model.cuda()
MaskLoss = ls.ContrastiveLoss1()
ab_test_dir = os.path.join(cfg.SAVE_PRED_PATH, 'contrastive_loss')
check_dir(ab_test_dir)
save_change_map_dir = os.path.join(ab_test_dir, 'changemaps/')
save_valid_dir = os.path.join(ab_test_dir, 'valid_imgs')
save_roc_dir = os.path.join(ab_test_dir, 'roc')
check_dir(save_change_map_dir), check_dir(
save_valid_dir), check_dir(save_roc_dir)
#########
######### optimizer ##########
######## how to set different learning rate for differernt layers #########
optimizer = torch.optim.Adam(params=model.parameters(
), lr=cfg.INIT_LEARNING_RATE, weight_decay=cfg.DECAY)
######## iter img_label pairs ###########
loss_total = 0
time_start = time.time()
for epoch in range(60):
for batch_idx, batch in enumerate(train_loader):
step = epoch * len(train_loader) + batch_idx
util.adjust_learning_rate(cfg.INIT_LEARNING_RATE, optimizer, step)
model.train()
img1_idx, img2_idx, label_idx, filename, height, width = batch
img1, img2, label = img1_idx.cuda(), img2_idx.cuda(), label_idx.cuda()
label = label.float()
out_conv5, out_fc, out_embedding = model(img1, img2)
out_conv5_t0, out_conv5_t1 = out_conv5
out_fc_t0, out_fc_t1 = out_fc
out_embedding_t0, out_embedding_t1 = out_embedding
label_rz_conv5 = util.rz_label(
label, size=out_conv5_t0.data.cpu().numpy().shape[2:]).cuda()
label_rz_fc = util.rz_label(
label, size=out_fc_t0.data.cpu().numpy().shape[2:]).cuda()
label_rz_embedding = util.rz_label(
label, size=out_embedding_t0.data.cpu().numpy().shape[2:]).cuda()
contractive_loss_conv5 = MaskLoss(
out_conv5_t0, out_conv5_t1, label_rz_conv5)
contractive_loss_fc = MaskLoss(out_fc_t0, out_fc_t1, label_rz_fc)
contractive_loss_embedding = MaskLoss(
out_embedding_t0, out_embedding_t1, label_rz_embedding)
loss = contractive_loss_conv5 + contractive_loss_fc + contractive_loss_embedding
loss_total += loss.data.cpu()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (batch_idx) % 20 == 0:
print("Epoch [%d/%d] Loss: %.4f Mask_Loss_conv5: %.4f Mask_Loss_fc: %.4f "
"Mask_Loss_embedding: %.4f" % (epoch, batch_idx, loss.item(), contractive_loss_conv5.item(),
contractive_loss_fc.item(), contractive_loss_embedding.item()))
if (batch_idx) % 1000 == 0:
model.eval()
current_metric = validate(
model, val_loader, epoch, save_change_map_dir, save_roc_dir)
if current_metric > best_metric:
torch.save({'state_dict': model.state_dict()},
os.path.join(ab_test_dir, 'model' + str(epoch) + '.pth'))
shutil.copy(os.path.join(ab_test_dir, 'model' + str(epoch) + '.pth'),
os.path.join(ab_test_dir, 'model_best.pth'))
best_metric = current_metric
current_metric = validate(
model, val_loader, epoch, save_change_map_dir, save_roc_dir)
if current_metric > best_metric:
torch.save({'state_dict': model.state_dict()},
os.path.join(ab_test_dir, 'model' + str(epoch) + '.pth'))
shutil.copy(os.path.join(ab_test_dir, 'model' + str(epoch) + '.pth'),
os.path.join(ab_test_dir, 'model_best.pth'))
best_metric = current_metric
if epoch % 5 == 0:
torch.save({'state_dict': model.state_dict()},
os.path.join(ab_test_dir, 'model' + str(epoch) + '.pth'))
elapsed = round(time.time() - time_start)
elapsed = str(datetime.timedelta(seconds=elapsed))
print('Elapsed {}'.format(elapsed))
if __name__ == '__main__':
main()