Skip to content

Latest commit

 

History

History
80 lines (54 loc) · 2.15 KB

README.md

File metadata and controls

80 lines (54 loc) · 2.15 KB

The PyTorch Implementation Of SummaRuNNer

License

Statement

  • Not the official implementation! Just For Learning and communication!

Models

  1. RNN_RNN
  1. CNN_RNN
  1. Hierarchical Attention Networks

Setup

Requires pipenv. Use pip install pipenv if not installed.

pipenv install
pipenv shell

Usage

# train
python main.py -device 0 -batch_size 32 -model RNN_RNN -seed 1 -save_dir checkpoints/XXX.pt
# test
python main.py -device 0 -batch_size 1 -test -load_dir checkpoints/XXX.pt
# predict
python main.py -batch_size 1 -predict -filename x.txt -load_dir checkpoints/RNN_RNN_seed_1.pt

pretrained models

  1. RNN_RNN(checkpoints/RNN_RNN_seed_1.pt)
  2. CNN_RNN(checkpoints/CNN_RNN_seed_1.pt)
  3. AttnRNN(checkpoints/AttnRNN_seed_1.pt)

Result

DailyMail(75 bytes)

model ROUGE-1 ROUGE-2 ROUGE-L
SummaRNNer(Nallapati) 26.2 10.8 14.4
RNN-RNN 26.0 11.5 13.8
CNN-RNN 25.8 11.3 13.8
Hierarchical Attn Net 26.0 11.4 13.8

Blog

Download Data:

Evaluation

Acknowledge