This repository has been archived by the owner on Oct 16, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 28
/
train.py
176 lines (142 loc) · 5.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from asyncio.log import logger
import contextlib
import os
import colossalai
import torch
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.trainer import Trainer, hooks
from colossalai.utils import MultiTimer, get_current_device
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.context import ParallelMode
from data import build_data
from model import build_loss, build_model
from utils import AutoregressiveWrapper, calc_local_model_size, calc_mem
from colossalai.utils import colo_set_process_memory_fraction, colo_device_memory_capacity
def limit_cuda_memory(size_in_GB: int):
cuda_capacity = colo_device_memory_capacity(get_current_device())
if size_in_GB * (1024**3) < cuda_capacity:
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
logger = get_dist_logger()
logger.info("Using {} GB of GPU memory".format(size_in_GB))
def train_palm():
assert torch.cuda.is_available()
disable_existing_loggers()
parser = colossalai.get_default_parser()
parser.add_argument("--from_torch", default=False, action="store_true")
args = parser.parse_args()
if args.from_torch:
colossalai.launch_from_torch(config=args.config, seed=42)
else:
# standard launch
colossalai.launch(
config=args.config,
rank=args.rank,
world_size=args.world_size,
local_rank=args.local_rank,
host=args.host,
port=args.port,
seed=42,
)
# set to 40GB, if you are using a high-end GPU.
limit_cuda_memory(40)
assert hasattr(gpc.config, "BATCH_SIZE"), "Please provide BATCH_SIZE in your configuration"
assert hasattr(gpc.config, "SEQ_LENGTH"), "Please provide SEQ_LENGTH in your configuration"
assert hasattr(gpc.config, "NUM_EPOCHS"), "Please provide NUM_EPOCHS in your configuration"
use_zero = hasattr(gpc.config, "zero")
ctx = contextlib.nullcontext()
tflop = 0
if use_zero:
ctx = ZeroInitContext(
target_device=torch.cuda.current_device(),
shard_strategy=gpc.config.zero.model_config.shard_strategy,
shard_param=True,
)
logger = get_dist_logger()
if hasattr(gpc.config, "LOG_PATH"):
log_path = gpc.config.LOG_PATH
logger.log_to_file(log_path)
with ctx:
model = build_model()
model = AutoregressiveWrapper(model)
seq_len=gpc.config.SEQ_LENGTH
batch_size=gpc.config.BATCH_SIZE
# numel is a model elem in a DP process.
numel = 0
if use_zero:
numel = ctx.model_numel_tensor.item()
else:
numel = calc_local_model_size(model)
tflop = numel * batch_size * seq_len \
* gpc.get_world_size(ParallelMode.MODEL) * gpc.get_world_size(ParallelMode.DATA) * 8 / (1024 ** 4)
if numel < 1e9:
msg = f"{numel / 1e6:.3f} M"
else:
msg = f"{numel / 1e9:.3f} B"
model_mem = torch.cuda.max_memory_allocated(get_current_device()) / 1024**3
logger.info("Model is built.", ranks=[0])
logger.info(f"Parameter size = {msg} | Model memory = {model_mem:.3f} GB.", ranks=[0])
criterion = build_loss()
logger.info("Loss is built.", ranks=[0])
train_dataloader, test_dataloader = build_data(
dataset_path=os.environ["DATA"],
tokenizer_path=os.environ["TOKENIZER"],
seq_len=gpc.config.SEQ_LENGTH,
batch_size=gpc.config.BATCH_SIZE,
)
logger.info("Dataset is loaded.", ranks=[0])
# We use a fast CPU Adam here
# If we set cpu_offload=True in optimizer_config
use_cpu_adam = (
hasattr(gpc.config, "zero")
and hasattr(gpc.config.zero, "model_config")
and getattr(gpc.config.zero.model_config, "tensor_placement_policy") != "cuda"
)
optimizer = HybridAdam if use_cpu_adam else torch.optim.AdamW
optimizer = optimizer(model.parameters(), lr=0.001, weight_decay=1e-2)
# total_steps = gpc.config.NUM_EPOCHS * len(train_dataloader)
# warmup_steps = getattr(gpc.config, "WARMUP_EPOCHS", 0) * len(train_dataloader)
# lr_scheduler = LinearWarmupLR(optimizer, total_steps=total_steps, warmup_steps=warmup_steps)
logger.info("Optimizer is built.", ranks=[0])
engine, train_dataloader, _, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
# lr_scheduler=lr_scheduler,
train_dataloader=train_dataloader,
)
def batch_data_process_func(batch_data):
data = batch_data["input_ids"]
labels = batch_data["labels"]
return data, labels
engine.schedule.batch_data_process_func = batch_data_process_func
timer = MultiTimer()
trainer = Trainer(engine=engine, logger=logger, timer=timer)
hook_list = [
hooks.LogMetricByEpochHook(logger=logger),
hooks.LogMetricByStepHook(),
hooks.LossHook(),
hooks.ThroughputHook(ignored_steps=10, tflop_per_step = tflop),
# hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False),
hooks.LogMemoryByEpochHook(logger),
# hooks.SaveCheckpointHook(checkpoint_dir="./palm.ckpt", model=model),
]
logger.info("Training start.", ranks=[0])
trainer.fit(
train_dataloader=train_dataloader,
epochs=gpc.config.NUM_EPOCHS,
max_steps=20,
hooks=hook_list,
return_output_label=False,
display_progress=True,
)
opt_state = engine.optimizer.state_dict()
if isinstance(engine.optimizer, colossalai.amp.naive_amp.NaiveAMPOptimizer):
opt_state = opt_state['optimizer']
os_mem = calc_mem(opt_state)
logger.info(f"{engine.optimizer.__class__.__name__} state memory usage = {os_mem / 1024**2:.3f} MB", ranks=[0])
gpc.destroy()
logger.info("Training complete.", ranks=[0])
if __name__ == "__main__":
train_palm()