Skip to content

Latest commit

 

History

History
47 lines (37 loc) · 1.58 KB

README.md

File metadata and controls

47 lines (37 loc) · 1.58 KB

Loss-Aware-Binarization

Implementation of ICLR 2017 paper "Loss aware Binarization of Deep Networks", tested with GTX TITAN X, python 2.7, theano 0.9.0 and lasagne 0.2.dev1.

This repository is divided in two subrepositories:

  • FNN: enables the reproduction of the FNN results(on MNIST, CIFAR-10, SVHN)reported in the article

  • RNN: enables the reproduction of the RNN results(on War and Peace, Linux Kernel) reported in the article

Requirements This software is implemented on top of the implementation of BinaryConnect and has all the same requirements.

Example training command on War and Peace dataset:

  • training LAB
python warpeace.py --method="LAB" --lr_start=0.002 --w="w" --len=100
  • training LAB2
python warpeace.py --method="LAB" --lr_start=0.002 --w="wa" --len=100

If you find loss-aware weight quantization useful in your research, please consider citing the the paper

@InProceedings{hou2017loss,
	title={Loss-aware Binarization of Deep Networks},
	author={Hou, Lu and Yao, Quanming and Kwok, James T.},
	booktitle={International Conference on Learning Representations},
	year={2017}
}

@InProceedings{hou2018loss,
	title={Loss-aware Weight Quantization of Deep Networks},
	author={Hou, Lu and Kwok, James T.},
	booktitle={International Conference on Learning Representations},
	year={2018}
}

@InProceedings{hou2019analysis,
	title={Analysis of Quantized Models},
	author={Hou, Lu and Zhang, Ruiliang and Kwok, James T.},
	booktitle={International Conference on Learning Representations},
	year={2019}
}