AAAI24 paper
This is the official repository for "Game-Theoretic Unlearnable Example Generator"). This repository contains an implementation of GUE and evaluation on poisoned datasets.
- Python 3.11.3
- PyTorch 2.0.1
- Torchvision 2.0.0
We give an example of training GUE generator on CIFAR-10 dataset:
python gue.py --dataset cifar10 --epochs 50 --eta 1.5 --lr_atk 0.1 --lr_cls 0.01 --tensorboard_path save/path
Evaluate the unlearnable examples generated by GUE generator:
python evaluation.py --dataset cifar10 --arch ResNet18 --out_dir ./results --path ./your/path/atkmodel --exp_name gue --train_loss ST --lr 0.01
We also provide pretrained GUE generator. To test it, use:
python evaluation.py --dataset cifar10 --arch ResNet18 --out_dir ./results --path ./gue_cifar10.pth --exp_name gue --train_loss ST --lr 0.01