Skip to content

Latest commit

 

History

History
30 lines (26 loc) · 1.76 KB

README.md

File metadata and controls

30 lines (26 loc) · 1.76 KB

Instructions for adding distributed benchmarks to continuous run:

  1. You can add your benchmark file under tensorflow/benchmarks/scripts directory. The benchmark should accept task_index, job_name, ps_hosts and worker_hosts flags. You can copy-paste the following flag definitions:

    tf.app.flags.DEFINE_integer("task_index", None, "Task index, should be >= 0.")
    tf.app.flags.DEFINE_string("job_name", None, "job name: worker or ps")
    tf.app.flags.DEFINE_string("ps_hosts", None, "Comma-separated list of hostname:port pairs")
    tf.app.flags.DEFINE_string("worker_hosts", None, "Comma-separated list of hostname:port pairs")
  2. Report benchmark values by calling store_data_in_json from your benchmark code. This function is defined in benchmark_util.py.

  3. Create a Dockerfile that sets up dependencies and runs your benchmark. For example, see Dockerfile.tf_cnn_benchmarks.

  4. Add the benchmark to benchmark_configs.yml

    • Set benchmark_name to a descriptive name for your benchmark and make sure it is unique.
    • Set worker_count and ps_count.
    • Set docker_file to the Dockerfile path starting with benchmarks/ directory.
    • Optionally, you can pass flags to your benchmark by adding args list.
  5. Send PR with the changes to annarev.

Currently running benchmarks: https://benchmarks-dot-tensorflow-testing.appspot.com/

For any questions, please contact [email protected].