-
Notifications
You must be signed in to change notification settings - Fork 21
/
transform_data.py
573 lines (515 loc) · 26.3 KB
/
transform_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import argparse
import cv2
import imgaug as ia
from imgaug import augmenters as iaa
from imgaug import parameters as iap
import imutils
import math
import numpy as np
import os
import pandas as pd
import random
from shapely import geometry
import fetch_data
import generate_data
from config import Config
def key_pts_to_yolo(key_pts, w_img, h_img):
"""
Convert a list of keypoints into a yolo training format
:param key_pts: list of keypoints
:param w_img: width of the entire image
:param h_img: height of the entire image
:return: <x> <y> <width> <height>
"""
x1 = max(0, min([pt[0] for pt in key_pts]))
x2 = min(w_img, max([pt[0] for pt in key_pts]))
y1 = max(0, min([pt[1] for pt in key_pts]))
y2 = min(h_img, max([pt[1] for pt in key_pts]))
x = (x2 + x1) / 2 / w_img
y = (y2 + y1) / 2 / h_img
width = (x2 - x1) / w_img
height = (y2 - y1) / h_img
return x, y, width, height
class ImageGenerator:
"""
A template for generating a training image
An ImageGenerator contains a background image, list of cards, and other environmental parameters to
set up a training image for YOLO network
"""
def __init__(self, img_bg, class_ids, width, height, skew=None, cards=None):
"""
:param img_bg: background (textile) image
:param width: width of the training image
:param height: height of the training image
:param skew: 4 coordinates that indicates the corners (in normalized form) for perspective transform
:param cards: list of Card objects
"""
self.img_bg = img_bg
self.class_ids = class_ids
self.img_result = None
self.width = width
self.height = height
if cards is None:
self.cards = []
else:
self.cards = cards
# Compute transform matrix for perspective transform (used for skewing the final result)
if skew is not None:
orig_corner = np.array([[0, 0], [0, height], [width, height], [width, 0]], dtype=np.float32)
new_corner = np.array([[width * s[0], height * s[1]] for s in skew], dtype=np.float32)
self.M = cv2.getPerspectiveTransform(orig_corner, new_corner)
pass
else:
self.M = None
pass
def add_card(self, card, x=None, y=None, theta=0.0, scale=1.0):
"""
Add a card to this generator scenario.
:param card: card to be added
:param x: new X-coordinate for the centre of the card
:param y: new Y-coordinate for the centre of the card
:param theta: new angle for the card
:param scale: new scale for the card
:return: none
"""
# If the position isn't given, push it out of the image so that it won't be visible during rendering
if x is None:
x = -len(card.img[0]) / 2
if y is None:
y = -len(card.img) / 2
self.cards.append(card)
card.x = x
card.y = y
card.theta = theta
card.scale = scale
pass
def render(self, visibility=0.5, aug=None, display=False, debug=False):
"""
Display the current state of the generator.
:param visibility: portion of the card's image that must not be overlapped by other cards for the card to be
considered as visible
:param aug: image augmentator to apply during rendering
:param display: flag for displaying the rendering result
:param debug: flag for debug
:return: none
"""
self.check_visibility(visibility=visibility)
img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8)
card_mask = cv2.imread(Config.card_mask_path)
for card in self.cards:
card_x = int(card.x + 0.5)
card_y = int(card.y + 0.5)
# Scale & rotate card image
img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale)))
# Add a random glaring on individual card - it happens frequently in real life as MTG cards can reflect
# the lights very well.
if aug is not None:
seq = iaa.Sequential([
iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(128)), size_px_max=[1, 3],
upscale_method="cubic"), # Lighting
])
img_card = seq.augment_image(img_card)
mask_scale = cv2.resize(card_mask, (int(len(card_mask[0]) * card.scale), int(len(card_mask) * card.scale)))
img_mask = cv2.bitwise_and(img_card, mask_scale)
img_rotate = imutils.rotate_bound(img_mask, card.theta / math.pi * 180)
# Calculate the position of the card image in relation to the background
# Crop the card image if it's out of boundary
card_w = len(img_rotate[0])
card_h = len(img_rotate)
card_crop_x1 = max(0, card_w // 2 - card_x)
card_crop_x2 = min(card_w, card_w // 2 + len(img_result[0]) - card_x)
card_crop_y1 = max(0, card_h // 2 - card_y)
card_crop_y2 = min(card_h, card_h // 2 + len(img_result) - card_y)
img_card_crop = img_rotate[card_crop_y1:card_crop_y2, card_crop_x1:card_crop_x2]
# Calculate the position of the corresponding area in the background
bg_crop_x1 = max(0, card_x - (card_w // 2))
bg_crop_x2 = min(len(img_result[0]), int(card_x + (card_w / 2) + 0.5))
bg_crop_y1 = max(0, card_y - (card_h // 2))
bg_crop_y2 = min(len(img_result), int(card_y + (card_h / 2) + 0.5))
img_result_crop = img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2]
# Override the background with the current card
img_result_crop = np.where(img_card_crop, img_card_crop, img_result_crop)
img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] = img_result_crop
if debug:
for ext_obj in card.objects:
if ext_obj.visible:
for pt in ext_obj.key_pts:
cv2.circle(img_result, card.coordinate_in_generator(pt[0], pt[1]), 2, (1, 1, 255), 10)
bounding_box = card.bb_in_generator(ext_obj.key_pts)
cv2.rectangle(img_result, bounding_box[0], bounding_box[2], (1, 255, 1), 5)
img_result = cv2.GaussianBlur(img_result, (5, 5), 0)
# Skew the cards if it's provided
if self.M is not None:
img_result = cv2.warpPerspective(img_result, self.M, (self.width, self.height))
if debug:
for card in self.cards:
for ext_obj in card.objects:
if ext_obj.visible:
new_pts = np.array([[list(card.coordinate_in_generator(pt[0], pt[1]))]
for pt in ext_obj.key_pts], dtype=np.float32)
new_pts = cv2.perspectiveTransform(new_pts, self.M)
for pt in new_pts:
cv2.circle(img_result, (pt[0][0], pt[0][1]), 2, (255, 1, 1), 10)
img_bg = cv2.resize(self.img_bg, (self.width, self.height))
img_result = np.where(img_result, img_result, img_bg)
# Apply image augmentation
if aug is not None:
img_result = aug.augment_image(img_result)
if display or debug:
cv2.imshow('Result', img_result)
cv2.waitKey(0)
self.img_result = img_result
pass
def generate_horizontal_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
"""
Generating the first scenario where the cards are laid out in a straight horizontal line
:param gap: horizontal offset between each adjacent cards
:param scale: scale of each cards in the generator
:param theta: rotation of the entire span in radian
:param shift: range of arbitrary offset for each card
:param jitter: range of in-place rotation for each card in radian
:return: True if successfully generated, otherwise False
"""
# Set scale of the cards, variance of shift & jitter to be applied if they're not given
card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
if scale is None:
# Scale the cards so that card takes about 50% of the image's height
coverage_ratio = 0.5
scale = self.height * coverage_ratio / card_size[1]
if shift is None:
# Plus minus 5% of the card's height
shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05]
pass
if jitter is None:
# Plus minus 10 degrees
jitter = [-math.pi / 18, math.pi / 18]
if gap is None:
# 25% of the card's width - set symbol and 1-2 mana symbols will be visible on each card
gap = card_size[0] * scale * 0.4
# Determine the location of the first card
# The cards will cover (width of a card + (# of cards - 1) * gap) pixels wide and (height of a card) pixels high
x_anchor = int(self.width / 2 + (len(self.cards) - 1) * gap / 2)
y_anchor = self.height // 2
for card in self.cards:
card.scale = scale
card.x = x_anchor
card.y = y_anchor
card.theta = 0
card.shift(shift, shift)
card.rotate(jitter)
card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
x_anchor -= gap
return True
def generate_vertical_span(self, gap=None, scale=None, theta=0, shift=None, jitter=None):
"""
Generating the second scenario where the cards are laid out in a straight vertical line
:param gap: horizontal offset between each adjacent cards
:param scale: scale of each cards in the generator
:param theta: rotation of the entire span in radian
:param shift: range of arbitrary offset for each card
:param jitter: range of in-place rotation for each card in radian
:return: True if successfully generated, otherwise False
:return: True if successfully generated, otherwise False
"""
# Set scale of the cards, variance of shift & jitter to be applied if they're not given
card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
if scale is None:
# Scale the cards so that card takes about 50% of the image's height
coverage_ratio = 0.5
scale = self.height * coverage_ratio / card_size[1]
if shift is None:
# Plus minus 5% of the card's height
shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05]
pass
if jitter is None:
# Plus minus 5 degrees
jitter = [-math.pi / 36, math.pi / 36]
if gap is None:
# 15% of the card's height - the title bar (with mana symbols) will be visible
gap = card_size[1] * scale * 0.25
# Determine the location of the first card
# The cards will cover (width of a card) pixels wide and (height of a card + (# of cards - 1) * gap) pixels high
x_anchor = self.width // 2
y_anchor = int(self.height / 2 - (len(self.cards) - 1) * gap / 2)
for card in self.cards:
card.scale = scale
card.x = x_anchor
card.y = y_anchor
card.theta = 0
card.shift(shift, shift)
card.rotate(jitter)
card.rotate(theta, centre=(self.width // 2 - x_anchor, self.height // 2 - y_anchor))
y_anchor += gap
return True
def generate_fan_out(self, centre, theta_between_cards=None, scale=None, shift=None, jitter=None):
"""
Generating the third scenario where the cards are laid out in a fan shape
:return: True if successfully generated, otherwise False
"""
# TODO
return False
def generate_non_obstructive(self, tolerance=0.90, scale=None):
"""
Generating the fourth scenario where the cards are laid in arbitrary position that doesn't obstruct other cards
:param tolerance: minimum level of visibility for each cards
:param scale: scale of each cards in generator
:return: True if successfully generated, otherwise False
"""
card_size = (len(self.cards[0].img[0]), len(self.cards[0].img))
if scale is None:
# Total area of the cards should cover about 25-40% of the entire image, depending on the number of cards
scale = math.sqrt(self.width * self.height * min(0.25 + 0.02 * len(self.cards), 0.4)
/ (card_size[0] * card_size[1] * len(self.cards)))
# Position each card at random location that doesn't obstruct other cards
i = 0
while i < len(self.cards):
card = self.cards[i]
card.scale = scale
rep = 0
while True:
card.x = random.uniform(card_size[1] * scale / 2, self.width - card_size[1] * scale)
card.y = random.uniform(card_size[1] * scale / 2, self.height - card_size[1] * scale)
card.theta = random.uniform(-math.pi, math.pi)
self.check_visibility(self.cards[:i + 1], visibility=tolerance)
# This position is not obstructive if all of the cards are visible
is_visible = [other_card.objects[0].visible for other_card in self.cards[:i + 1]]
non_obstructive = all(is_visible)
if non_obstructive:
i += 1
break
rep += 1
if rep >= 1000:
# Reassign previous card's position
i -= 1
break
return True
def check_visibility(self, cards=None, i_check=None, visibility=0.5):
"""
Check whether if extracted objects in a card is visible in the current scenario, and update their status
:param cards: list of cards (in a correct Z-order). All cards in this Generator are checked by default.
:param i_check: indices of cards that needs to be checked. Cards that aren't in this list will only be used
to check visibility of other cards. All cards are checked by default.
:param visibility: minimum ratio of the object's area that aren't covered by another card to be visible
:return: none
"""
if cards is None:
cards = self.cards
if i_check is None:
i_check = range(len(cards))
# Create a polygon of each card
card_poly_list = [geometry.Polygon([card.coordinate_in_generator(0, 0),
card.coordinate_in_generator(0, len(card.img)),
card.coordinate_in_generator(len(card.img[0]), len(card.img)),
card.coordinate_in_generator(len(card.img[0]), 0)]) for card in self.cards]
template_poly = geometry.Polygon([(0, 0), (self.width, 0), (self.width, self.height), (0, self.height)])
# First card in the list is overlaid on the bottom of the card pile
for i in i_check:
card = cards[i]
for ext_obj in card.objects:
obj_poly = geometry.Polygon([card.coordinate_in_generator(pt[0], pt[1]) for pt in ext_obj.key_pts])
obj_area = obj_poly.area
# Check if the other cards are blocking this object or if it's out of the template
# If there are other polygons with higher indices in the list, that card is overlapping this object
# We assume that no objects from the same card is on top of each other
for card_poly in card_poly_list[i + 1:]:
obj_poly = obj_poly.difference(card_poly)
obj_poly = obj_poly.intersection(template_poly)
visible_area = obj_poly.area
ext_obj.visible = obj_area * visibility <= visible_area
def export_training_data(self, out_name, visibility=0.5, aug=None):
"""
Export the generated training image along with the txt file for all bounding boxes
:param out_name: path of the output file (without extension)
:param visibility: portion of the card's image that must not be overlapped by other cards for the card to be
considered as visible
:param aug: image augmentator to be applied
:return: none
"""
self.render(visibility, aug=aug)
cv2.imwrite(out_name + '.jpg', self.img_result)
out_txt = open(out_name + '.txt', 'w')
for card in self.cards:
for ext_obj in card.objects:
if not ext_obj.visible:
continue
coords_in_gen = [card.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in ext_obj.key_pts]
obj_yolo_info = key_pts_to_yolo(coords_in_gen, self.width, self.height)
if ext_obj.label == 'card':
#class_id = self.class_ids[card.info['name']]
class_id = 0 # since only the entire card is used
out_txt.write(str(class_id) + ' %.6f %.6f %.6f %.6f\n' % obj_yolo_info)
out_txt.close()
class Card:
"""
A class for storing required information about a card in relation to the ImageGenerator
"""
def __init__(self, img, card_info, objects, x=None, y=None, theta=None, scale=None):
"""
:param img: image of the card
:param card_info: details like name, mana cost, type, set, etc
:param objects: list of ExtractedObjects like mana & set symbol, etc
:param x: X-coordinate of the card's centre in relation to the generator
:param y: Y-coordinate of the card's centre in relation to the generator
:param theta: angle of rotation of the card in relation to the generator
:param scale: scale of the card in the generator in relation to the original image
"""
self.img = img
self.info = card_info
self.objects = objects
self.x = x
self.y = y
self.theta = theta
self.scale = scale
pass
def shift(self, x, y):
"""
Apply a X/Y translation on this image
:param x: amount of X-translation. If range is given, translate by a random amount within that range
:param y: amount of Y-translation. If range is given, translate by a random amount within that range
:return: none
"""
if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2):
self.x += random.uniform(x[0], x[1])
else:
self.x += x
if isinstance(y, tuple) or (isinstance(y, list) and len(y) == 2):
self.y += random.uniform(y[0], y[1])
else:
self.y += y
pass
def rotate(self, theta, centre=(0, 0)):
"""
Apply a rotation on this image with a centre
:param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within
that range
:param centre: coordinate of the centre of the rotation in relation to the centre of this card
:return: none
"""
if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2):
theta = random.uniform(theta[0], theta[1])
# If the centre given is the centre of this card, the whole math simplifies a bit
# (This still works without the if statement, but let's not do useless trigs if we know the answer already)
if centre is not (0, 0):
# Rotation math
self.x -= -centre[1] * math.sin(theta) + centre[0] * math.cos(theta)
self.y -= centre[1] * math.cos(theta) + centre[0] * math.sin(theta)
# Offset for the coordinate translation
self.x += centre[0]
self.y += centre[1]
self.theta += theta
pass
def coordinate_in_generator(self, x, y):
"""
Converting coordinate within the card into the coordinate in the generator it is associated with
:param x: x coordinate within the card
:param y: y coordinate within the card
:return: (x, y) coordinate in the generator
"""
# Relative distance in X & Y axis, if the centre of the card is at the origin (0, 0)
rel_x = x - len(self.img[0]) // 2
rel_y = y - len(self.img) // 2
# Scaling
rel_x *= self.scale
rel_y *= self.scale
# Rotation
rot_x = rel_x - rel_y * math.sin(self.theta) + rel_x * math.cos(self.theta)
rot_y = rel_y + rel_y * math.cos(self.theta) + rel_x * math.sin(self.theta)
# Negate offset
rot_x -= rel_x
rot_y -= rel_y
# Shift
gen_x = rot_x + self.x
gen_y = rot_y + self.y
return int(gen_x), int(gen_y)
def bb_in_generator(self, key_pts):
"""
Convert a keypoints of bounding box in card into the coordinate in the generator
:param key_pts: keypoints of the bounding box
:return: bounding box represented by 4 points in the generator
"""
coords_in_gen = [self.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in key_pts]
x1 = min([pt[0] for pt in coords_in_gen])
x2 = max([pt[0] for pt in coords_in_gen])
y1 = min([pt[1] for pt in coords_in_gen])
y2 = max([pt[1] for pt in coords_in_gen])
return [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
class ExtractedObject:
"""
Simple struct to hold information about an extracted object
"""
def __init__(self, label, key_pts):
self.label = label
self.key_pts = key_pts
self.visible = False
def main(args):
random.seed()
ia.seed(random.randrange(10000))
bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % Config.data_dir, dump_it=False)
background = generate_data.Backgrounds(images=bg_images)
card_pool = pd.DataFrame()
for set_name in Config.all_set_list:
df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name))
card_pool = card_pool.append(df)
class_ids = {}
with open('%s/obj.names' % Config.data_dir) as names_file:
class_name_list = names_file.read().splitlines()
for i in range(len(class_name_list)):
class_ids[class_name_list[i]] = i
for i in range(args.num_gen):
# Arbitrarily select top left and right corners for perspective transformation
# Since the training image are generated with random rotation, don't need to skew all four sides
skew = [[random.uniform(0, 0.25), 0], [0, 1], [1, 1],
[random.uniform(0.75, 1), 0]]
generator = ImageGenerator(background.get_random(), class_ids, args.width, args.height, skew=skew)
out_name = ''
# Use 2 to 5 cards per generator
for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows():
img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
card_info['collector_number'],
fetch_data.get_valid_filename(card_info['name']))
out_name += '%s%s_' % (card_info['set'], card_info['collector_number'])
card_img = cv2.imread(img_name)
if card_img is None:
fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (Config.data_dir,
card_info['set']))
card_img = cv2.imread(img_name)
if card_img is None:
print('WARNING: card %s is not found!' % img_name)
detected_object_list = generate_data.apply_bounding_box(card_img, card_info)
card = Card(card_img, card_info, detected_object_list)
generator.add_card(card)
for j in range(args.num_iter):
seq = iaa.Sequential([
iaa.Multiply((0.8, 1.2)), # darken / brighten the whole image
iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)), per_channel=0.1, size_px_max=[3, 6],
upscale_method="cubic"), # Lighting
iaa.AdditiveGaussianNoise(scale=random.uniform(0, 0.05) * 255, per_channel=0.1), # Noises
iaa.Dropout(p=[0, 0.05], per_channel=0.1) # Dropout
])
if i % 3 == 0:
generator.generate_non_obstructive()
generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_update/%s%d'
% (Config.data_dir, out_name, j), aug=seq)
elif i % 3 == 1:
generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_update/%s%d'
% (Config.data_dir, out_name, j), aug=seq)
else:
generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi))
generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_update/%s%d'
% (Config.data_dir, out_name, j), aug=seq)
#generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi))
#generator.render(display=True, aug=seq, debug=True)
print('Generated %s%d' % (out_name, j))
generator.img_bg = background.get_random()
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--num_gen', dest='num_gen', help='Number of training images to generate',
type=int, required=True)
parser.add_argument('-ni', '--num_iter', dest='num_iter', help='Number of iterations to generate each config',
type=int, default=1)
parser.add_argument('-w', '--width', dest='width', help='Width of the training image', type=int, default=1440)
parser.add_argument('-ht', '--height', dest='height', help='Height of the training image', type=int, default=960)
args = parser.parse_args()
main(args)