forked from robcarver17/pysystemtrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiple_prices.py
255 lines (186 loc) · 8.95 KB
/
multiple_prices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from syscore.objects import missing_data
from dataclasses import dataclass
import datetime as datetime
from copy import copy
import pandas as pd
from sysinit.futures.build_multiple_prices_from_raw_data import create_multiple_price_stack_from_raw_data
from sysobjects.dict_of_named_futures_per_contract_prices import list_of_price_column_names, \
list_of_contract_column_names, contract_column_names, setOfNamedContracts, contract_name_from_column_name, \
futuresNamedContractFinalPricesWithContractID, dictFuturesNamedContractFinalPricesWithContractID, price_column_names, \
price_name, carry_name, forward_name
from sysobjects.dict_of_futures_per_contract_prices import dictFuturesContractFinalPrices
@dataclass
class singleRowMultiplePrices:
price: float = None
carry: float = None
forward: float = None
price_contract: str = None
carry_contract: str = None
forward_contract: str = None
def concat_with_multiple_prices(self, multiple_prices, timedelta_seconds=1):
new_time_index = multiple_prices.index[-1] + datetime.timedelta(seconds=timedelta_seconds)
new_df_row = self.as_aligned_pd_row(new_time_index)
combined_df = pd.concat([pd.DataFrame(multiple_prices), new_df_row], axis=0)
new_multiple_prices = futuresMultiplePrices(combined_df)
return new_multiple_prices
def as_aligned_pd_row(self, time_index: datetime.timedelta) ->pd.DataFrame:
new_dict = {price_name: self.price, carry_name: self.carry, forward_name: self.forward,
contract_name_from_column_name(price_name): self.price_contract,
contract_name_from_column_name(carry_name): self.carry_contract,
contract_name_from_column_name(forward_name): self.forward_contract
}
new_dict_with_nones_removed = dict([(key,value) for key,value in new_dict.items()
if value is not None])
new_df_row = pd.DataFrame(new_dict_with_nones_removed, index=[time_index])
return new_df_row
class futuresMultiplePrices(pd.DataFrame):
def __init__(self, data):
_check_valid_multiple_price_data(data)
super().__init__(data)
data.index.name = "index" # arctic compatible
@classmethod
## NOT TYPE CHECKING OF ROLL_CALENDAR AS WOULD CAUSE CIRCULAR IMPORT
def create_from_raw_data(
futuresMultiplePrices,
roll_calendar,
dict_of_futures_contract_closing_prices: dictFuturesContractFinalPrices):
"""
:param roll_calendar: rollCalendar
:param dict_of_futures_closing_contract_prices: dictFuturesContractPrices with only one column
:return: pd.DataFrame with the 6 columns PRICE, CARRY, FORWARD, PRICE_CONTRACT, CARRY_CONTRACT, FORWARD_CONTRACT
"""
all_price_data_stack = create_multiple_price_stack_from_raw_data(
roll_calendar, dict_of_futures_contract_closing_prices
)
multiple_prices = futuresMultiplePrices(all_price_data_stack)
multiple_prices._is_empty = False
return multiple_prices
@classmethod
def create_empty(futuresMultiplePrices):
"""
Our graceful fail is to return an empty, but valid, dataframe
"""
data = pd.DataFrame(columns=multiple_data_columns)
multiple_prices = futuresMultiplePrices(data)
return multiple_prices
def current_contract_dict(self) -> setOfNamedContracts:
if len(self)==0:
return missing_data
final_row = self.iloc[-1]
contract_dict = dict([(key, final_row[value])
for key, value in contract_column_names.items()])
contract_dict = setOfNamedContracts(contract_dict)
return contract_dict
def as_dict(self) ->dictFuturesNamedContractFinalPricesWithContractID:
"""
Split up and transform into dict
:return: dictFuturesContractFinalPricesWithContractID, keys PRICE, FORWARD, CARRY
"""
self_as_dict = {}
for price_column_name in list_of_price_column_names:
contract_column_name = contract_name_from_column_name(price_column_name)
self_as_dict[price_column_name] = futuresNamedContractFinalPricesWithContractID(
self[price_column_name],
self[contract_column_name],
price_column_name=price_column_name
)
self_as_dict = dictFuturesNamedContractFinalPricesWithContractID(
self_as_dict)
return self_as_dict
@classmethod
def from_merged_dict(futuresMultiplePrices, prices_dict: dictFuturesNamedContractFinalPricesWithContractID):
"""
Re-create from dict, eg results of _as_dict
:param prices_dict: dictFuturesContractFinalPricesWithContractID keys PRICE, CARRY, FORWARD
:return: object
"""
multiple_prices_list = []
for key_name in price_column_names.keys():
try:
relevant_data = prices_dict[key_name]
except KeyError:
raise Exception(
"Create multiple prices as dict needs %s as key" % key_name
)
multiple_prices_list.append(relevant_data.as_pd())
multiple_prices_data_frame = pd.concat(multiple_prices_list, axis=1)
# Now it's possible we have more price data for some things than others
# so we forward fill contract_ids; not prices
multiple_prices_data_frame[
list_of_contract_column_names
] = multiple_prices_data_frame[list_of_contract_column_names].ffill()
multiple_prices_object = futuresMultiplePrices(
multiple_prices_data_frame)
return multiple_prices_object
def sort_index(self):
df = pd.DataFrame(self)
sorted_df = df.sort_index()
return futuresMultiplePrices(sorted_df)
def update_multiple_prices_with_dict(self, new_prices_dict: dictFuturesNamedContractFinalPricesWithContractID):
"""
Given a dict containing prices, forward, carry prices; update existing multiple prices
Because of asynchronicity, we allow overwriting of earlier data
WILL NOT WORK IF A ROLL HAS HAPPENED
:return:
"""
# Add contractid labels to new_prices_dict
# For each key in new_prices dict,
# merge the prices together
# allowing historic updates, but not overwrites of non nan values
# from the updated prices dict
# create a new multiple prices object
current_prices_dict = self.as_dict()
try:
merged_data_as_dict = current_prices_dict.merge_data(
new_prices_dict)
except Exception as e:
raise e
merged_data = futuresMultiplePrices.from_merged_dict(merged_data_as_dict)
return merged_data
def drop_trailing_nan(self):
"""
Drop rows where all values are NaN
:return: new futuresMultiplePrices
"""
new_multiple_prices = copy(self)
found_zeros = True
while found_zeros and len(new_multiple_prices) > 0:
last_prices_nan_values = (new_multiple_prices.isna(
).iloc[-1][list_of_price_column_names].values)
if all(last_prices_nan_values):
# drop the last row
new_multiple_prices = new_multiple_prices[:-1]
# Should still be true but let's be careful
found_zeros = True
continue
else:
# Terminate loop
found_zeros = False
# Should terminate anyway let's be sure
break
return futuresMultiplePrices(new_multiple_prices)
def add_one_row_with_time_delta(self, single_row_prices: singleRowMultiplePrices, timedelta_seconds: int=1):
"""
Add a row with a slightly different timestamp
:param single_row_prices: dict of scalars, keys are one or more of 'price','forward','carry','*_contract'
If a contract column is missing, we forward fill
If a price column is missing, we include nans
:return: new multiple prices
"""
new_multiple_prices = single_row_prices.concat_with_multiple_prices(self, timedelta_seconds=timedelta_seconds)
new_multiple_prices = new_multiple_prices.forward_fill_contracts()
return new_multiple_prices
def forward_fill_contracts(self):
combined_df = copy(self)
for colname in list_of_contract_column_names:
combined_df[colname] = combined_df[colname].ffill()
return futuresMultiplePrices(combined_df)
def _check_valid_multiple_price_data(data):
data_present = sorted(data.columns)
try:
assert data_present == multiple_data_columns
except AssertionError:
raise Exception("futuresMultiplePrices has to conform to pattern")
multiple_data_columns = sorted(
list_of_price_column_names +
list_of_contract_column_names)