forked from sachuverma/DataStructures-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMedian of Two Sorted Arrays.cpp
84 lines (68 loc) · 1.9 KB
/
Median of Two Sorted Arrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*
Median of Two Sorted Arrays
===========================
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Follow up: The overall run time complexity should be O(log (m+n)).
*/
class Solution
{
public:
double findMedianSortedArrays(vector<int> &input1, vector<int> &input2)
{
if (input1.size() > input2.size())
return findMedianSortedArrays(input2, input1);
int x = input1.size();
int y = input2.size();
int low = 0;
int high = x;
while (low <= high)
{
int partitionX = (low + high) / 2;
int partitionY = (x + y + 1) / 2 - partitionX;
int maxLeftX =
(partitionX == 0) ? INT_MIN : input1[partitionX - 1];
int minRightX =
(partitionX == x) ? INT_MAX : input1[partitionX];
int maxLeftY =
(partitionY == 0) ? INT_MIN : input2[partitionY - 1];
int minRightY =
(partitionY == y) ? INT_MAX : input2[partitionY];
if (maxLeftX <= minRightY && maxLeftY <= minRightX)
{
if ((x + y) % 2 == 0)
return ((double)max(maxLeftX, maxLeftY) + min(minRightX, minRightY)) / 2.0;
else
return (double)max(maxLeftX, maxLeftY);
}
else if (maxLeftX > minRightY)
high = partitionX - 1;
else
low = partitionX + 1;
}
return -1;
}
};