-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
633 lines (497 loc) · 21.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"""SGRAF model"""
import math
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch.nn.utils.clip_grad import clip_grad_norm_
def l1norm(X, dim, eps=1e-8):
"""L1-normalize columns of X"""
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
X = torch.div(X, norm)
return X
def l2norm(X, dim=-1, eps=1e-8):
"""L2-normalize columns of X"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
def cosine_sim(x1, x2, dim=-1, eps=1e-8):
"""Returns cosine similarity between x1 and x2, computed along dim."""
w12 = torch.sum(x1 * x2, dim)
w1 = torch.norm(x1, 2, dim)
w2 = torch.norm(x2, 2, dim)
return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
class EncoderImage(nn.Module):
"""
Build local region representations by common-used FC-layer.
Args: - images: raw local detected regions, shape: (batch_size, 36, 2048).
Returns: - img_emb: finial local region embeddings, shape: (batch_size, 36, 1024).
"""
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImage, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer"""
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
# assuming that the precomputed features are already l2-normalized
img_emb = self.fc(images)
# normalize in the joint embedding space
if not self.no_imgnorm:
img_emb = l2norm(img_emb, dim=-1)
return img_emb
def load_state_dict(self, state_dict):
"""Overwrite the default one to accept state_dict from Full model"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImage, self).load_state_dict(new_state)
class EncoderText(nn.Module):
"""
Build local word representations by common-used Bi-GRU or GRU.
Args: - images: raw local word ids, shape: (batch_size, L).
Returns: - img_emb: final local word embeddings, shape: (batch_size, L, 1024).
"""
def __init__(
self,
vocab_size,
word_dim,
embed_size,
num_layers,
use_bi_gru=False,
no_txtnorm=False,
):
super(EncoderText, self).__init__()
self.embed_size = embed_size
self.no_txtnorm = no_txtnorm
# word embedding
self.embed = nn.Embedding(vocab_size, word_dim)
self.dropout = nn.Dropout(0.4)
# caption embedding
self.use_bi_gru = use_bi_gru
self.cap_rnn = nn.GRU(
word_dim, embed_size, num_layers, batch_first=True, bidirectional=use_bi_gru
)
self.init_weights()
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
def forward(self, captions, lengths):
"""Handles variable size captions"""
# embed word ids to vectors
cap_emb = self.embed(captions)
cap_emb = self.dropout(cap_emb)
# pack the caption
packed = pack_padded_sequence(
cap_emb, lengths, batch_first=True, enforce_sorted=False
)
# forward propagate RNN
out, _ = self.cap_rnn(packed)
# reshape output to (batch_size, hidden_size)
cap_emb, _ = pad_packed_sequence(out, batch_first=True)
if self.use_bi_gru:
cap_emb = (
cap_emb[:, :, : cap_emb.size(2) // 2]
+ cap_emb[:, :, cap_emb.size(2) // 2 :]
) / 2
# normalization in the joint embedding space
if not self.no_txtnorm:
cap_emb = l2norm(cap_emb, dim=-1)
return cap_emb
class VisualSA(nn.Module):
"""
Build global image representations by self-attention.
Args: - local: local region embeddings, shape: (batch_size, 36, 1024)
- raw_global: raw image by averaging regions, shape: (batch_size, 1024)
Returns: - new_global: final image by self-attention, shape: (batch_size, 1024).
"""
def __init__(self, embed_dim, dropout_rate, num_region):
super(VisualSA, self).__init__()
self.embedding_local = nn.Sequential(
nn.Linear(embed_dim, embed_dim),
nn.BatchNorm1d(num_region),
nn.Tanh(),
nn.Dropout(dropout_rate),
)
self.embedding_global = nn.Sequential(
nn.Linear(embed_dim, embed_dim),
nn.BatchNorm1d(embed_dim),
nn.Tanh(),
nn.Dropout(dropout_rate),
)
self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1))
self.init_weights()
self.softmax = nn.Softmax(dim=1)
def init_weights(self):
for embeddings in self.children():
for m in embeddings:
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, local, raw_global):
# compute embedding of local regions and raw global image
l_emb = self.embedding_local(local)
g_emb = self.embedding_global(raw_global)
# compute the normalized weights
g_emb = g_emb.unsqueeze(1).repeat(1, l_emb.size(1), 1)
common = l_emb.mul(g_emb)
weights = self.embedding_common(common).squeeze(2)
weights = self.softmax(weights)
# compute final image, shape
new_global = (weights.unsqueeze(2) * local).sum(dim=1)
new_global = l2norm(new_global, dim=-1)
return new_global
class TextSA(nn.Module):
"""
Build global text representations by self-attention.
Args: - local: local word embeddings, shape: (batch_size, L, 1024)
- raw_global: raw text by averaging words, shape: (batch_size, 1024)
Returns: - new_global: final text by self-attention, shape: (batch_size, 1024).
"""
def __init__(self, embed_dim, dropout_rate):
super(TextSA, self).__init__()
self.embedding_local = nn.Sequential(
nn.Linear(embed_dim, embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)
)
self.embedding_global = nn.Sequential(
nn.Linear(embed_dim, embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)
)
self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1))
self.init_weights()
self.softmax = nn.Softmax(dim=1)
def init_weights(self):
for embeddings in self.children():
for m in embeddings:
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, local, raw_global):
# compute embedding of local words and raw global text
l_emb = self.embedding_local(local)
g_emb = self.embedding_global(raw_global)
# compute the normalized weights
g_emb = g_emb.unsqueeze(1).repeat(1, l_emb.size(1), 1)
common = l_emb.mul(g_emb)
weights = self.embedding_common(common).squeeze(2)
weights = self.softmax(weights)
# compute final text
new_global = (weights.unsqueeze(2) * local).sum(dim=1)
new_global = l2norm(new_global, dim=-1)
return new_global
class GraphReasoning(nn.Module):
"""
Perform the similarity graph reasoning with a full-connected graph
Args: - sim_emb: global and local alignments, shape: (batch_size, L+1, 256)
Returns; - sim_sgr: reasoned graph nodes after several steps, shape: (batch_size, L+1, 256)
"""
def __init__(self, sim_dim):
super(GraphReasoning, self).__init__()
self.graph_query_w = nn.Linear(sim_dim, sim_dim)
self.graph_key_w = nn.Linear(sim_dim, sim_dim)
self.sim_graph_w = nn.Linear(sim_dim, sim_dim)
self.relu = nn.ReLU(inplace=True)
self.init_weights()
def forward(self, sim_emb):
sim_query = self.graph_query_w(sim_emb)
sim_key = self.graph_key_w(sim_emb)
sim_edge = torch.softmax(torch.bmm(sim_query, sim_key.permute(0, 2, 1)), dim=-1)
sim_sgr = torch.bmm(sim_edge, sim_emb)
sim_sgr = self.relu(self.sim_graph_w(sim_sgr))
return sim_sgr
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class AttentionFiltration(nn.Module):
"""
Perform the similarity Attention Filtration with a gate-based attention
Args: - sim_emb: global and local alignments, shape: (batch_size, L+1, 256)
Returns; - sim_saf: aggregated alignment after attention filtration, shape: (batch_size, 256)
"""
def __init__(self, sim_dim):
super(AttentionFiltration, self).__init__()
self.attn_sim_w = nn.Linear(sim_dim, 1)
self.bn = nn.BatchNorm1d(1)
self.init_weights()
def forward(self, sim_emb):
sim_attn = l1norm(
torch.sigmoid(self.bn(self.attn_sim_w(sim_emb).permute(0, 2, 1))), dim=-1
)
sim_saf = torch.matmul(sim_attn, sim_emb)
sim_saf = l2norm(sim_saf.squeeze(1), dim=-1)
return sim_saf
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class EncoderSimilarity(nn.Module):
"""
Compute the image-text similarity by SGR, SAF, AVE
Args: - img_emb: local region embeddings, shape: (batch_size, 36, 1024)
- cap_emb: local word embeddings, shape: (batch_size, L, 1024)
Returns:
- sim_all: final image-text similarities, shape: (batch_size, batch_size).
"""
def __init__(self, embed_size, sim_dim, module_name="AVE", sgr_step=3):
super(EncoderSimilarity, self).__init__()
self.module_name = module_name
self.v_global_w = VisualSA(embed_size, 0.4, 36)
self.t_global_w = TextSA(embed_size, 0.4)
self.sim_tranloc_w = nn.Linear(embed_size, sim_dim)
self.sim_tranglo_w = nn.Linear(embed_size, sim_dim)
#self.sim_eval_w = nn.Linear(sim_dim, 1)
self.sigmoid = nn.Sigmoid()
if module_name == "SGR":
self.SGR_module = nn.ModuleList(
[GraphReasoning(sim_dim) for i in range(sgr_step)]
)
elif module_name == "SAF":
self.SAF_module = AttentionFiltration(sim_dim)
else:
raise ValueError("Invalid module")
self.init_weights()
def forward_individual(self,img_emb, cap_emb, cap_lens,meta_net):
sim_all = []
n_caption = cap_emb.size(0)
# get enhanced global images by self-attention
img_ave = torch.mean(img_emb, 1)
img_glo = self.v_global_w(img_emb, img_ave)
for i in range(n_caption):
# get the i-th sentence
n_word = cap_lens[i]
cap_i = cap_emb[i, :n_word, :].unsqueeze(0)
# get enhanced global i-th text by self-attention
cap_ave_i = torch.mean(cap_i, 1)
cap_glo_i = self.t_global_w(cap_i, cap_ave_i)
# local-global alignment construction
Context_img = SCAN_attention(cap_i, img_emb[i].unsqueeze(0), smooth=9.0)
sim_loc = torch.pow(torch.sub(Context_img, cap_i), 2)
sim_loc = l2norm(self.sim_tranloc_w(sim_loc), dim=-1)
sim_glo = torch.pow(torch.sub(img_glo[i].unsqueeze(0), cap_glo_i), 2)
sim_glo = l2norm(self.sim_tranglo_w(sim_glo), dim=-1)
# concat the global and local alignments
sim_emb = torch.cat([sim_glo.unsqueeze(1), sim_loc], 1)
# compute the final similarity vector
if self.module_name == "SGR":
for module in self.SGR_module:
sim_emb = module(sim_emb)
sim_vec = sim_emb[:, 0, :]
else:
sim_vec = self.SAF_module(sim_emb)
# compute the final similarity score
sim_i = meta_net(sim_vec)
sim_all.append(sim_i)
sim_all = torch.cat(sim_all, 0)
return sim_all
def forward(self, img_emb, cap_emb, cap_lens,meta_net):
sim_all = []
n_image = img_emb.size(0)
n_caption = cap_emb.size(0)
# get enhanced global images by self-attention
img_ave = torch.mean(img_emb, 1)
img_glo = self.v_global_w(img_emb, img_ave)
for i in range(n_caption):
# get the i-th sentence
n_word = cap_lens[i]
cap_i = cap_emb[i, :n_word, :].unsqueeze(0)
cap_i_expand = cap_i.repeat(n_image, 1, 1)
# get enhanced global i-th text by self-attention
cap_ave_i = torch.mean(cap_i, 1)
cap_glo_i = self.t_global_w(cap_i, cap_ave_i)
# local-global alignment construction
Context_img = SCAN_attention(cap_i_expand, img_emb, smooth=9.0)
sim_loc = torch.pow(torch.sub(Context_img, cap_i_expand), 2)
sim_loc = l2norm(self.sim_tranloc_w(sim_loc), dim=-1)
sim_glo = torch.pow(torch.sub(img_glo, cap_glo_i), 2)
sim_glo = l2norm(self.sim_tranglo_w(sim_glo), dim=-1)
# concat the global and local alignments
sim_emb = torch.cat([sim_glo.unsqueeze(1), sim_loc], 1)
# compute the final similarity vector
if self.module_name == "SGR":
for module in self.SGR_module:
sim_emb = module(sim_emb)
sim_vec = sim_emb[:, 0, :]
else:
sim_vec = self.SAF_module(sim_emb)
# compute the final similarity score
sim_i = meta_net(sim_vec)
sim_all.append(sim_i)
# (n_image, n_caption)
sim_all = torch.cat(sim_all, 1)
with torch.no_grad():
sim_ind = torch.diag(sim_all)
return sim_all,sim_ind
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def SCAN_attention(query, context, smooth, eps=1e-8):
"""
query: (n_context, queryL, d)
context: (n_context, sourceL, d)
"""
# --> (batch, d, queryL)
queryT = torch.transpose(query, 1, 2)
# (batch, sourceL, d)(batch, d, queryL)
# --> (batch, sourceL, queryL)
attn = torch.bmm(context, queryT)
attn = nn.LeakyReLU(0.1)(attn)
attn = l2norm(attn, 2)
# --> (batch, queryL, sourceL)
attn = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, queryL, sourceL
attn = F.softmax(attn * smooth, dim=2)
# --> (batch, sourceL, queryL)
attnT = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, d, sourceL)
contextT = torch.transpose(context, 1, 2)
# (batch x d x sourceL)(batch x sourceL x queryL)
# --> (batch, d, queryL)
weightedContext = torch.bmm(contextT, attnT)
# --> (batch, queryL, d)
weightedContext = torch.transpose(weightedContext, 1, 2)
weightedContext = l2norm(weightedContext, dim=-1)
return weightedContext
class ContrastiveLoss(nn.Module):
"""
Compute contrastive loss
"""
def __init__(self, margin=0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(
self,
scores,
hard_negative="none",
probs=None,
soft_margin= None,
):
# compute image-sentence score matrix
diagonal = scores.diag().view(scores.size(0), 1)
d1 = diagonal.expand_as(scores)
d2 = diagonal.t().expand_as(scores)
if probs is None:
margin = self.margin
else:
if soft_margin is None:
margin = self.margin
elif soft_margin == "s_adaptive":
s = 1./ (1 + torch.pow((probs/(1-probs)),-2))
margin = self.margin * s
# compare every diagonal score to scores in its column: caption retrieval
cost_s = (margin + scores - d1).clamp(min=0)
# compare every diagonal score to scores in its row: image retrieval
cost_im = (margin + scores - d2).clamp(min=0)
# clear diagonals
mask = torch.eye(scores.size(0)) > 0.5
mask = mask.to(cost_s.device)
cost_s, cost_im = cost_s.masked_fill_(mask, 0), cost_im.masked_fill_(mask, 0)
# maximum and mean
if hard_negative == "none":
cost_s_mean, cost_im_mean = cost_s.mean(1), cost_im.mean(0)
return cost_s_mean.sum() + cost_im_mean.sum()
elif hard_negative == "max_violation":
cost_s_max, cost_im_max = cost_s.max(1)[0], cost_im.max(0)[0]
return cost_s_max.sum() + cost_im_max.sum()
else:
raise ValueError("Invalid hard negative type")
class SGRAF(nn.Module):
"""
Similarity Reasoning and Filtration (SGRAF) Network
"""
def __init__(self, opt):
super(SGRAF, self).__init__()
self.img_enc = EncoderImage(
opt.img_dim, opt.embed_size, no_imgnorm=opt.no_imgnorm
)
self.txt_enc = EncoderText(
opt.vocab_size,
opt.word_dim,
opt.embed_size,
opt.num_layers,
use_bi_gru=opt.bi_gru,
no_txtnorm=opt.no_txtnorm,
)
self.sim_enc = EncoderSimilarity(
opt.embed_size, opt.sim_dim, opt.module_name, opt.sgr_step
)
self.criterion = ContrastiveLoss(margin=opt.margin)
self.Eiters = 0
def forward_emb(self, images, captions, lengths):
"""Compute the image and caption embeddings"""
# Forward feature encoding
img_embs = self.img_enc(images)
cap_embs = self.txt_enc(captions, lengths)
return img_embs, cap_embs, lengths
def forward_sim(self, img_embs, cap_embs, cap_lens,meta_net):
# Forward similarity encoding
sims,sims_ind = self.sim_enc(img_embs, cap_embs, cap_lens,meta_net)
return sims,sims_ind
def forward_all(self, images, captions, lengths,meta_net):
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, lengths)
sims,sims_ind = self.forward_sim(img_embs, cap_embs, cap_lens,meta_net)
return sims,sims_ind
def get_sim_individual(self, images, captions, lengths, meta_net):
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, lengths)
sims_ind = self.sim_enc.forward_individual(img_embs, cap_embs, cap_lens, meta_net)
return sims_ind
def forward(self,images, captions, lengths,meta_net, warm_up,ind):
if ind:
sims_ind = self.get_sim_individual(images, captions, lengths,meta_net)
return sims_ind
else:
sims,sims_ind = self.forward_all(images, captions, lengths,meta_net)
if warm_up:
loss = self.criterion(sims)
else:
loss = self.criterion(sims, hard_negative="max_violation", probs=sims_ind.squeeze(), soft_margin="s_adaptive")
return loss
class HiddenLayer(nn.Module):
def __init__(self, input_size, output_size):
super(HiddenLayer, self).__init__()
self.fc = nn.Linear(input_size, output_size)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.fc(x))
class Meta_Sim(nn.Module):
def __init__(self, input_size = 256 ,hidden_size=64, num_layers=1):
super(Meta_Sim, self).__init__()
self.first_hidden_layer = HiddenLayer(input_size, hidden_size)
self.output_layer = nn.Linear(hidden_size, num_layers)
def forward(self, x):
x = self.first_hidden_layer(x)
x = self.output_layer(x)
return torch.sigmoid(x)