-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrandom_color.py
74 lines (60 loc) · 2.65 KB
/
random_color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from colorsys import hsv_to_rgb
from math import exp, sqrt
import random
def get_random_colors(n, h_range=(0.0, 1.0), s_range=(0.2, 1.0), v_range=(0.6, 1.0)):
"""
get random, visually distinct colors, for use in for example qualitative choropleth map.
Colors are generated in the HSV space and converted to RGB values.
Parameters:
n: Number of colors to generate
h_range: Tuple of min and max value of the Hue parameter in the range 0.0-1.0
s_range: Tuple of min and max value of the Saturation parameter in the range 0.0-1.0.
The min value should be a least 0.2 for good results
v_range: Tuple of min and max value of the Value parameter in the range 0.0-1.0
The min value should be a least 0.4 for good results
Returns:
rbg_int: a list of integer value RGB tuples
"""
assert (
h_range[0] >= 0 and h_range[1] <= 1
), "h_range min and max must be between 0-1"
assert (
s_range[0] >= 0 and s_range[1] <= 1
), "s_range min and max must be between 0-1"
assert (
v_range[0] >= 0 and v_range[1] <= 1
), "v_range min and max must be between 0-1"
assert h_range[0] < h_range[1], "h_range min must be less than h_range max"
assert s_range[0] < s_range[1], "s_range min must be less than s_range max"
assert v_range[0] < v_range[1], "v_range min must be less than v_range max"
sample_space = [
(random.uniform(*h_range), random.uniform(*s_range), random.uniform(*v_range))
for r in range(10 * n)
]
selected_colors = []
selected_colors.append(sample_space.pop())
# find the color in our sample space that maximizes the minimum
# distance too all the already select colors.
for i in range(n - 1):
min_dist = [_min_dist_to_selected(selected_colors, c) for c in sample_space]
next_color_idx = min_dist.index(max(min_dist))
selected_colors.append(sample_space.pop(next_color_idx))
rgb_float = (hsv_to_rgb(*s) for s in selected_colors)
rgb_int = [
(int(round(r * 255)), int(round(g * 255)), int(round(b * 255)))
for r, g, b in rgb_float
]
return rgb_int
def _min_dist_to_selected(selected, c):
return min([Dvr(c, s) for s in selected])
def _dh(h1, h2):
return min(abs(h1 - h2), 1 - abs(h1 - h2)) * 2
def _Dc(c1, c2):
h1, s1, v1 = c1
h2, s2, v2 = c2
return sqrt(_dh(h1, h2) ** 2 + (s1 - s2) ** 2 + (v1 - v2) ** 2)
def Dvr(c1, c2):
h1, s1, v1 = c1
h2, s2, v2 = c2
color_diff = max(_dh(h1, h2), abs(s1 - s2)) ** 2 + _Dc(c1, c2) ** 2
return min(sqrt(color_diff / 2), 1)