-
Notifications
You must be signed in to change notification settings - Fork 67
/
models.py
executable file
·299 lines (262 loc) · 11.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import config
d_model = config.d_model
n_head = config.num_heads
d_word = config.glove_dim
d_char = config.char_dim
batch_size = config.batch_size
dropout = config.dropout
dropout_char = config.dropout_char
d_k = d_model // n_head
d_cq = d_model * 4
len_c = config.para_limit
len_q = config.ques_limit
def mask_logits(target, mask):
return target * (1-mask) + mask * (-1e30)
class PosEncoder(nn.Module):
def __init__(self, length):
super().__init__()
freqs = torch.Tensor(
[10000 ** (-i / d_model) if i % 2 == 0 else -10000 ** ((1 - i) / d_model) for i in range(d_model)]).unsqueeze(dim=1)
phases = torch.Tensor([0 if i % 2 == 0 else math.pi / 2 for i in range(d_model)]).unsqueeze(dim=1)
pos = torch.arange(length).repeat(d_model, 1).to(torch.float)
self.pos_encoding = nn.Parameter(torch.sin(torch.add(torch.mul(pos, freqs), phases)), requires_grad=False)
def forward(self, x):
x = x + self.pos_encoding
return x
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_ch, out_ch, k, dim=1, bias=True):
super().__init__()
if dim == 1:
self.depthwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch,
padding=k // 2, bias=bias)
self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0, bias=bias)
elif dim == 2:
self.depthwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch,
padding=k // 2, bias=bias)
self.pointwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, padding=0, bias=bias)
else:
raise Exception("Wrong dimension for Depthwise Separable Convolution!")
nn.init.kaiming_normal_(self.depthwise_conv.weight)
nn.init.constant_(self.depthwise_conv.bias, 0.0)
nn.init.kaiming_normal_(self.depthwise_conv.weight)
nn.init.constant_(self.pointwise_conv.bias, 0.0)
def forward(self, x):
return self.pointwise_conv(self.depthwise_conv(x))
class Highway(nn.Module):
def __init__(self, layer_num: int, size: int):
super().__init__()
self.n = layer_num
self.linear = nn.ModuleList([nn.Linear(size, size) for _ in range(self.n)])
self.gate = nn.ModuleList([nn.Linear(size, size) for _ in range(self.n)])
def forward(self, x):
x = x.transpose(1, 2)
for i in range(self.n):
gate = torch.sigmoid(self.gate[i](x))
nonlinear = F.relu(self.linear[i](x))
x = gate * nonlinear + (1 - gate) * x
x = x.transpose(1, 2)
return x
class SelfAttention(nn.Module):
def __init__(self):
super().__init__()
Wo = torch.empty(d_model, d_k * n_head)
Wqs = [torch.empty(d_model, d_k) for _ in range(n_head)]
Wks = [torch.empty(d_model, d_k) for _ in range(n_head)]
Wvs = [torch.empty(d_model, d_k) for _ in range(n_head)]
nn.init.kaiming_uniform_(Wo)
for i in range(n_head):
nn.init.xavier_uniform_(Wqs[i])
nn.init.xavier_uniform_(Wks[i])
nn.init.xavier_uniform_(Wvs[i])
self.Wo = nn.Parameter(Wo)
self.Wqs = nn.ParameterList([nn.Parameter(X) for X in Wqs])
self.Wks = nn.ParameterList([nn.Parameter(X) for X in Wks])
self.Wvs = nn.ParameterList([nn.Parameter(X) for X in Wvs])
def forward(self, x, mask):
WQs, WKs, WVs = [], [], []
sqrt_d_k_inv = 1 / math.sqrt(d_k)
x = x.transpose(1, 2)
hmask = mask.unsqueeze(1)
vmask = mask.unsqueeze(2)
for i in range(n_head):
WQs.append(torch.matmul(x, self.Wqs[i]))
WKs.append(torch.matmul(x, self.Wks[i]))
WVs.append(torch.matmul(x, self.Wvs[i]))
heads = []
for i in range(n_head):
out = torch.bmm(WQs[i], WKs[i].transpose(1, 2))
out = torch.mul(out, sqrt_d_k_inv)
# not sure... I think `dim` should be 2 since it weighted each column of `WVs[i]`
out = mask_logits(out, hmask)
out = F.softmax(out, dim=2) * vmask
headi = torch.bmm(out, WVs[i])
heads.append(headi)
head = torch.cat(heads, dim=2)
out = torch.matmul(head, self.Wo)
return out.transpose(1, 2)
class MultiHeadAttention(nn.Module):
def __init__(self):
super().__init__()
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(d_model, d_model)
self.a = 1 / math.sqrt(d_k)
def forward(self, x, mask):
bs, _, l_x = x.size()
x = x.transpose(1,2)
k = self.k_linear(x).view(bs, l_x, n_head, d_k)
q = self.q_linear(x).view(bs, l_x, n_head, d_k)
v = self.v_linear(x).view(bs, l_x, n_head, d_k)
q = q.permute(2, 0, 1, 3).contiguous().view(bs*n_head, l_x, d_k)
k = k.permute(2, 0, 1, 3).contiguous().view(bs*n_head, l_x, d_k)
v = v.permute(2, 0, 1, 3).contiguous().view(bs*n_head, l_x, d_k)
mask = mask.unsqueeze(1).expand(-1, l_x, -1).repeat(n_head, 1, 1)
attn = torch.bmm(q, k.transpose(1, 2)) * self.a
attn = mask_logits(attn, mask)
attn = F.softmax(attn, dim=2)
attn = self.dropout(attn)
out = torch.bmm(attn, v)
out = out.view(n_head, bs, l_x, d_k).permute(1,2,0,3).contiguous().view(bs, l_x, d_model)
out = self.fc(out)
out = self.dropout(out)
return out.transpose(1,2)
class Embedding(nn.Module):
def __init__(self):
super().__init__()
self.conv2d = DepthwiseSeparableConv(d_char, d_char, 5, dim=2)
self.high = Highway(2, d_word+d_char)
def forward(self, ch_emb, wd_emb):
ch_emb = ch_emb.permute(0, 3, 1, 2)
ch_emb = F.dropout(ch_emb, p=dropout_char, training=self.training)
ch_emb = self.conv2d(ch_emb)
ch_emb = F.relu(ch_emb)
ch_emb, _ = torch.max(ch_emb, dim=3)
ch_emb = ch_emb.squeeze()
wd_emb = F.dropout(wd_emb, p=dropout, training=self.training)
wd_emb = wd_emb.transpose(1, 2)
emb = torch.cat([ch_emb, wd_emb], dim=1)
emb = self.high(emb)
return emb
class EncoderBlock(nn.Module):
def __init__(self, conv_num: int, ch_num: int, k: int, length: int):
super().__init__()
self.convs = nn.ModuleList([DepthwiseSeparableConv(ch_num, ch_num, k) for _ in range(conv_num)])
self.self_att = MultiHeadAttention()
self.fc = nn.Linear(ch_num, ch_num, bias=True)
self.pos = PosEncoder(length)
# self.norm = nn.LayerNorm([d_model, length])
self.normb = nn.LayerNorm([d_model, length])
self.norms = nn.ModuleList([nn.LayerNorm([d_model, length]) for _ in range(conv_num)])
self.norme = nn.LayerNorm([d_model, length])
self.L = conv_num
def forward(self, x, mask):
out = self.pos(x)
res = out
out = self.normb(out)
for i, conv in enumerate(self.convs):
out = conv(out)
out = F.relu(out)
out = out + res
if (i + 1) % 2 == 0:
p_drop = dropout * (i + 1) / self.L
out = F.dropout(out, p=p_drop, training=self.training)
res = out
out = self.norms[i](out)
# print("Before attention: {}".format(out.size()))
out = self.self_att(out, mask)
# print("After attention: {}".format(out.size()))
out = out + res
out = F.dropout(out, p=dropout, training=self.training)
res = out
out = self.norme(out)
out = self.fc(out.transpose(1, 2)).transpose(1, 2)
out = F.relu(out)
out = out + res
out = F.dropout(out, p=dropout, training=self.training)
return out
class CQAttention(nn.Module):
def __init__(self):
super().__init__()
w = torch.empty(d_model * 3)
lim = 1 / d_model
nn.init.uniform_(w, -math.sqrt(lim), math.sqrt(lim))
self.w = nn.Parameter(w)
def forward(self, C, Q, cmask, qmask):
ss = []
C = C.transpose(1, 2)
Q = Q.transpose(1, 2)
cmask = cmask.unsqueeze(2)
qmask = qmask.unsqueeze(1)
shape = (C.size(0), C.size(1), Q.size(1), C.size(2))
Ct = C.unsqueeze(2).expand(shape)
Qt = Q.unsqueeze(1).expand(shape)
CQ = torch.mul(Ct, Qt)
S = torch.cat([Ct, Qt, CQ], dim=3)
S = torch.matmul(S, self.w)
S1 = F.softmax(mask_logits(S, qmask), dim=2)
S2 = F.softmax(mask_logits(S, cmask), dim=1)
A = torch.bmm(S1, Q)
B = torch.bmm(torch.bmm(S1, S2.transpose(1, 2)), C)
out = torch.cat([C, A, torch.mul(C, A), torch.mul(C, B)], dim=2)
out = F.dropout(out, p=dropout, training=self.training)
return out.transpose(1, 2)
class Pointer(nn.Module):
def __init__(self):
super().__init__()
w1 = torch.empty(d_model * 2)
w2 = torch.empty(d_model * 2)
lim = 3 / (2 * d_model)
nn.init.uniform_(w1, -math.sqrt(lim), math.sqrt(lim))
nn.init.uniform_(w2, -math.sqrt(lim), math.sqrt(lim))
self.w1 = nn.Parameter(w1)
self.w2 = nn.Parameter(w2)
def forward(self, M1, M2, M3, mask):
X1 = torch.cat([M1, M2], dim=1)
X2 = torch.cat([M1, M3], dim=1)
Y1 = torch.matmul(self.w1, X1)
Y2 = torch.matmul(self.w2, X2)
Y1 = mask_logits(Y1, mask)
Y2 = mask_logits(Y2, mask)
p1 = F.log_softmax(Y1, dim=1)
p2 = F.log_softmax(Y2, dim=1)
return p1, p2
class QANet(nn.Module):
def __init__(self, word_mat, char_mat):
super().__init__()
self.char_emb = nn.Embedding.from_pretrained(torch.Tensor(char_mat), freeze=config.pretrained_char)
self.word_emb = nn.Embedding.from_pretrained(torch.Tensor(word_mat))
self.emb = Embedding()
self.context_conv = DepthwiseSeparableConv(d_word+d_char,d_model, 5)
self.question_conv = DepthwiseSeparableConv(d_word+d_char,d_model, 5)
self.c_emb_enc = EncoderBlock(conv_num=4, ch_num=d_model, k=7, length=len_c)
self.q_emb_enc = EncoderBlock(conv_num=4, ch_num=d_model, k=7, length=len_q)
self.cq_att = CQAttention()
self.cq_resizer = DepthwiseSeparableConv(d_model * 4, d_model, 5)
enc_blk = EncoderBlock(conv_num=2, ch_num=d_model, k=5, length=len_c)
self.model_enc_blks = nn.ModuleList([enc_blk] * 7)
self.out = Pointer()
def forward(self, Cwid, Ccid, Qwid, Qcid):
cmask = (torch.zeros_like(Cwid) == Cwid).float()
qmask = (torch.zeros_like(Qwid) == Qwid).float()
Cw, Cc = self.word_emb(Cwid), self.char_emb(Ccid)
Qw, Qc = self.word_emb(Qwid), self.char_emb(Qcid)
C, Q = self.emb(Cc, Cw), self.emb(Qc, Qw)
C = self.context_conv(C)
Q = self.question_conv(Q)
Ce = self.c_emb_enc(C, cmask)
Qe = self.q_emb_enc(Q, qmask)
X = self.cq_att(Ce, Qe, cmask, qmask)
M1 = self.cq_resizer(X)
for enc in self.model_enc_blks: M1 = enc(M1, cmask)
M2 = M1
for enc in self.model_enc_blks: M2 = enc(M2, cmask)
M3 = M2
for enc in self.model_enc_blks: M3 = enc(M3, cmask)
p1, p2 = self.out(M1, M2, M3, cmask)
return p1, p2