-
Notifications
You must be signed in to change notification settings - Fork 94
/
evaluate.py
145 lines (118 loc) · 4.59 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import openai
import os
import numpy as np
import pandas as pd
import time
from crop import crop
openai.api_key = "INSERTYOURKEYHERE"
choices = ["A", "B", "C", "D"]
def softmax(x):
z = x - max(x)
numerator = np.exp(z)
denominator = np.sum(numerator)
softmax = numerator/denominator
return softmax
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
prompt = df.iloc[idx, 0]
k = df.shape[1] - 2
for j in range(k):
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j+1])
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
return prompt
def gen_prompt(train_df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(format_subject(subject))
if k == -1:
k = train_df.shape[0]
for i in range(k):
prompt += format_example(train_df, i)
return prompt
def eval(args, subject, engine, dev_df, test_df):
cors = []
all_probs = []
answers = choices[:test_df.shape[1]-2]
for i in range(test_df.shape[0]):
# get prompt and make sure it fits
k = args.ntrain
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
while crop(prompt) != prompt:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
label = test_df.iloc[i, test_df.shape[1]-1]
while True:
try:
c = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=1,
logprobs=100,
temperature=0,
echo=True
)
break
except:
print("pausing")
time.sleep(1)
continue
lprobs = []
for ans in answers:
try:
lprobs.append(c["choices"][0]["logprobs"]["top_logprobs"][-1][" {}".format(ans)])
except:
print("Warning: {} not found. Artificially adding log prob of -100.".format(ans))
lprobs.append(-100)
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(lprobs)]
probs = softmax(np.array(lprobs))
cor = pred == label
cors.append(cor)
all_probs.append(probs)
acc = np.mean(cors)
cors = np.array(cors)
all_probs = np.array(all_probs)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
def main(args):
engines = args.engine
subjects = sorted([f.split("_test.csv")[0] for f in os.listdir(os.path.join(args.data_dir, "test")) if "_test.csv" in f])
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
for engine in engines:
if not os.path.exists(os.path.join(args.save_dir, "results_{}".format(engine))):
os.mkdir(os.path.join(args.save_dir, "results_{}".format(engine)))
print(subjects)
print(args)
for engine in engines:
print(engine)
all_cors = []
for subject in subjects:
dev_df = pd.read_csv(os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None)[:args.ntrain]
test_df = pd.read_csv(os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None)
cors, acc, probs = eval(args, subject, engine, dev_df, test_df)
all_cors.append(cors)
test_df["{}_correct".format(engine)] = cors
for j in range(probs.shape[1]):
choice = choices[j]
test_df["{}_choice{}_probs".format(engine, choice)] = probs[:, j]
test_df.to_csv(os.path.join(args.save_dir, "results_{}".format(engine), "{}.csv".format(subject)), index=None)
weighted_acc = np.mean(np.concatenate(all_cors))
print("Average accuracy: {:.3f}".format(weighted_acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ntrain", "-k", type=int, default=5)
parser.add_argument("--data_dir", "-d", type=str, default="data")
parser.add_argument("--save_dir", "-s", type=str, default="results")
parser.add_argument("--engine", "-e", choices=["davinci", "curie", "babbage", "ada"],
default=["davinci", "curie", "babbage", "ada"], nargs="+")
args = parser.parse_args()
main(args)