forked from razor1179/pytorch-kaldi-CGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_exp.py
executable file
·487 lines (386 loc) · 20.3 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
##########################################################
# pytorch-kaldi v.0.1
# Mirco Ravanelli, Titouan Parcollet
# Mila, University of Montreal
# October 2018
##########################################################
from __future__ import print_function
from __future__ import division
import os
import sys
import glob
import configparser
# import ConfigParser as configparser
import numpy as np
from utils import check_cfg, create_lists, create_configs, compute_avg_performance, \
read_args_command_line, run_shell, compute_n_chunks, get_all_archs, cfg_item2sec, \
dump_epoch_results, create_curves, change_lr_cfg, expand_str_ep
from shutil import copyfile
import re
from distutils.util import strtobool
import importlib
import math
# Reading global cfg file (first argument-mandatory file)
cfg_file = sys.argv[1]
if not (os.path.exists(cfg_file)):
sys.stderr.write(
'ERROR: The config file %s does not exist!\n' % (cfg_file))
sys.exit(0)
else:
config = configparser.ConfigParser()
config.read(cfg_file)
# Reading and parsing optional arguments from command line (e.g.,--optimization,lr=0.002)
[section_args, field_args, value_args] = read_args_command_line(
sys.argv, config)
# Output folder creation
out_folder = config['exp']['out_folder']
if not os.path.exists(out_folder):
os.makedirs(out_folder + '/exp_files')
# Log file path
log_file = config['exp']['out_folder'] + '/log.log'
# Read, parse, and check the config file
cfg_file_proto = config['cfg_proto']['cfg_proto']
[config, name_data, name_arch] = check_cfg(cfg_file, config, cfg_file_proto)
# Read cfg file options
is_production = strtobool(config['exp']['production'])
cfg_file_proto_chunk = config['cfg_proto']['cfg_proto_chunk']
cmd = config['exp']['cmd']
N_ep = int(config['exp']['N_epochs_tr'])
N_ep_str_format = '0' + str(int(max(math.ceil(np.log10(N_ep)), 1))) + 'd'
tr_data_lst = config['data_use']['train_with'].split(',')
valid_data_lst = config['data_use']['valid_with'].split(',')
forward_data_lst = config['data_use']['forward_with'].split(',')
max_seq_length_train = config['batches']['max_seq_length_train']
forward_save_files = list(
map(strtobool, config['forward']['save_out_file'].split(',')))
if config.has_option('exp', 'apply_prune_ep'):
apply_prune_ep = int(config.get('exp', 'apply_prune_ep'))
else:
apply_prune_ep = 0
print("- Reading config file......OK!")
# Copy the global cfg file into the output folder
cfg_file = out_folder + '/conf.cfg'
with open(cfg_file, 'w') as configfile:
config.write(configfile)
# Load the run_nn function from core libriary
# The run_nn is a function that process a single chunk of data
run_nn_script = config['exp']['run_nn_script'].split('.py')[0]
module = importlib.import_module('core')
run_nn = getattr(module, run_nn_script)
# Splitting data into chunks (see out_folder/additional_files)
create_lists(config)
# Writing the config files
create_configs(config)
print("- Chunk creation......OK!\n")
# create res_file
res_file_path = out_folder + '/res.res'
# res_file = open(res_file_path, "w")
# res_file.close()
# Learning rates and architecture-specific optimization parameters
arch_lst = get_all_archs(config)
lr = {}
auto_lr_annealing = {}
improvement_threshold = {}
halving_factor = {}
pt_files = {}
for arch in arch_lst:
lr[arch] = expand_str_ep(config[arch]['arch_lr'], 'float', N_ep, '|', '*')
if len(config[arch]['arch_lr'].split('|')) > 1:
auto_lr_annealing[arch] = False
else:
auto_lr_annealing[arch] = True
improvement_threshold[arch] = float(
config[arch]['arch_improvement_threshold'])
halving_factor[arch] = float(config[arch]['arch_halving_factor'])
pt_files[arch] = config[arch]['arch_pretrain_file']
# If production, skip training and forward directly from last saved models
if is_production:
ep = N_ep - 1
N_ep = 0
model_files = {}
for arch in pt_files.keys():
model_files[arch] = out_folder + '/exp_files/final_' + arch + '.pkl'
op_counter = 1 # used to dected the next configuration file from the list_chunks.txt
# Reading the ordered list of config file to process
cfg_file_list = [line.rstrip('\n') for line in open(
out_folder + '/exp_files/list_chunks.txt')]
cfg_file_list.append(cfg_file_list[-1])
# A variable that tells if the current chunk is the first one that is being processed:
processed_first = True
data_name = []
data_set = []
data_end_index = []
fea_dict = []
lab_dict = []
arch_dict = []
# --------TRAINING LOOP--------#
for ep in range(N_ep):
tr_loss_tot = 0
tr_error_tot = 0
tr_time_tot = 0
print('------------------------------ Epoch %s / %s ------------------------------' % (
format(ep, N_ep_str_format), format(N_ep - 1, N_ep_str_format)))
patterns = dict()
pattern_masks = dict()
for tr_data in tr_data_lst:
# Compute the total number of chunks for each training epoch
N_ck_tr = compute_n_chunks(
out_folder, tr_data, ep, N_ep_str_format, 'train')
N_ck_str_format = '0' + \
str(int(max(math.ceil(np.log10(N_ck_tr)), 1))) + 'd'
# ***Epoch training***
for ck in range(N_ck_tr):
# paths of the output files (info,model,chunk_specific cfg file)
info_file = out_folder + '/exp_files/train_' + tr_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '.info'
if ep + ck == 0:
model_files_past = {}
else:
model_files_past = model_files
model_files = {}
for arch in pt_files.keys():
model_files[arch] = info_file.replace(
'.info', '_' + arch + '.pkl')
config_chunk_file = out_folder + '/exp_files/train_' + tr_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '.cfg'
# update learning rate in the cfg file (if needed)
change_lr_cfg(config_chunk_file, lr, ep)
# if this chunk has not already been processed, do training...
if not (os.path.exists(info_file)):
print('Training %s chunk = %i / %i' %
(tr_data, ck + 1, N_ck_tr))
# getting the next chunk
next_config_file = cfg_file_list[op_counter]
# checking whether to prune or not
if (ck + 1) == N_ck_tr and (ep + 1) >= apply_prune_ep:
if_prune = True
else:
if_prune = False
# run chunk processing
[data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict],patterns, pattern_masks = run_nn(data_name, data_set,
data_end_index, fea_dict,
lab_dict, arch_dict,
config_chunk_file,
processed_first,
next_config_file, if_prune,
patterns, pattern_masks)
# update the first_processed variable
processed_first = False
if not (os.path.exists(info_file)):
sys.stderr.write(
"ERROR: training epoch %i, chunk %i not done! File %s does not exist.\nSee %s \n" % (
ep, ck, info_file, log_file))
sys.exit(0)
# update the operation counter
op_counter += 1
# update pt_file (used to initialized the DNN for the next chunk)
for pt_arch in pt_files.keys():
pt_files[pt_arch] = out_folder + '/exp_files/train_' + tr_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '_' + pt_arch + '.pkl'
# remove previous pkl files
if len(model_files_past.keys()) > 0:
for pt_arch in pt_files.keys():
if os.path.exists(model_files_past[pt_arch]):
os.remove(model_files_past[pt_arch])
# Training Loss and Error
tr_info_lst = sorted(
glob.glob(out_folder + '/exp_files/train_' + tr_data + '_ep' + format(ep, N_ep_str_format) + '*.info'))
[tr_loss, tr_error, tr_time] = compute_avg_performance(tr_info_lst)
tr_loss_tot = tr_loss_tot + tr_loss
tr_error_tot = tr_error_tot + tr_error
tr_time_tot = tr_time_tot + tr_time
# ***Epoch validation***
if ep > 0:
# store previous-epoch results (useful for learnig rate anealling)
valid_peformance_dict_prev = valid_peformance_dict
valid_peformance_dict = {}
tot_time = tr_time
for valid_data in valid_data_lst:
# Compute the number of chunks for each validation dataset
N_ck_valid = compute_n_chunks(
out_folder, valid_data, ep, N_ep_str_format, 'valid')
N_ck_str_format = '0' + \
str(int(max(math.ceil(np.log10(N_ck_valid)), 1))) + 'd'
for ck in range(N_ck_valid):
# paths of the output files
info_file = out_folder + '/exp_files/valid_' + valid_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '.info'
config_chunk_file = out_folder + '/exp_files/valid_' + valid_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '.cfg'
# Do validation if the chunk was not already processed
if not (os.path.exists(info_file)):
print('Validating %s chunk = %i / %i' %
(valid_data, ck + 1, N_ck_valid))
# Doing eval
# getting the next chunk
next_config_file = cfg_file_list[op_counter]
# run chunk processing
[data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict], patterns, pattern_masks = run_nn(data_name, data_set,
data_end_index, fea_dict,
lab_dict, arch_dict,
config_chunk_file,
processed_first,
next_config_file,
False,
patterns, pattern_masks)
# update the first_processed variable
processed_first = False
if not (os.path.exists(info_file)):
sys.stderr.write(
"ERROR: validation on epoch %i, chunk %i of dataset %s not done! File %s does not exist.\nSee %s \n" % (
ep, ck, valid_data, info_file, log_file))
sys.exit(0)
# update the operation counter
op_counter += 1
# Compute validation performance
valid_info_lst = sorted(
glob.glob(out_folder + '/exp_files/valid_' + valid_data + '_ep' + format(ep, N_ep_str_format) + '*.info'))
[valid_loss, valid_error, valid_time] = compute_avg_performance(
valid_info_lst)
valid_peformance_dict[valid_data] = [
valid_loss, valid_error, valid_time]
tot_time = tot_time + valid_time
# Print results in both res_file and stdout
dump_epoch_results(res_file_path, ep, tr_data_lst, tr_loss_tot, tr_error_tot, tot_time, valid_data_lst,
valid_peformance_dict, lr, N_ep)
# Check for learning rate annealing
if ep > 0:
# computing average validation error (on all the dataset specified)
err_valid_mean = np.mean(np.asarray(
list(valid_peformance_dict.values()))[:, 1])
err_valid_mean_prev = np.mean(np.asarray(
list(valid_peformance_dict_prev.values()))[:, 1])
for lr_arch in lr.keys():
# If an external lr schedule is not set, use newbob learning rate anealing
if ep < N_ep - 1 and auto_lr_annealing[lr_arch]:
if ((err_valid_mean_prev - err_valid_mean) / err_valid_mean) < improvement_threshold[lr_arch]:
new_lr_value = float(
lr[lr_arch][ep]) * halving_factor[lr_arch]
for i in range(ep + 1, N_ep):
lr[lr_arch][i] = str(new_lr_value)
# Training has ended, copy the last .pkl to final_arch.pkl for production
for pt_arch in pt_files.keys():
if os.path.exists(model_files[pt_arch]) and not os.path.exists(out_folder + '/exp_files/final_' + pt_arch + '.pkl'):
copyfile(model_files[pt_arch], out_folder +
'/exp_files/final_' + pt_arch + '.pkl')
# --------FORWARD--------#
patterns = dict()
pattern_masks = dict()
for forward_data in forward_data_lst:
# Compute the number of chunks
N_ck_forward = compute_n_chunks(
out_folder, forward_data, ep, N_ep_str_format, 'forward')
N_ck_str_format = '0' + \
str(int(max(math.ceil(np.log10(N_ck_forward)), 1))) + 'd'
for ck in range(N_ck_forward):
if not is_production:
print('Testing %s chunk = %i / %i' %
(forward_data, ck + 1, N_ck_forward))
else:
print('Forwarding %s chunk = %i / %i' %
(forward_data, ck + 1, N_ck_forward))
# output file
info_file = out_folder + '/exp_files/forward_' + forward_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '.info'
config_chunk_file = out_folder + '/exp_files/forward_' + forward_data + '_ep' + format(ep,
N_ep_str_format) + '_ck' + format(
ck, N_ck_str_format) + '.cfg'
# Do forward if the chunk was not already processed
if not (os.path.exists(info_file)):
# Doing forward
# getting the next chunk
next_config_file = cfg_file_list[op_counter]
# run chunk processing
[data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict],patterns, pattern_masks = run_nn(data_name, data_set,
data_end_index, fea_dict,
lab_dict, arch_dict,
config_chunk_file,
processed_first,
next_config_file,
False,
patterns, pattern_masks)
# update the first_processed variable
processed_first = False
if not (os.path.exists(info_file)):
sys.stderr.write(
"ERROR: forward chunk %i of dataset %s not done! File %s does not exist.\nSee %s \n" % (
ck, forward_data, info_file, log_file))
sys.exit(0)
# update the operation counter
op_counter += 1
# --------DECODING--------#
dec_lst = glob.glob(out_folder + '/exp_files/*_to_decode.ark')
forward_data_lst = config['data_use']['forward_with'].split(',')
forward_outs = config['forward']['forward_out'].split(',')
forward_dec_outs = list(
map(strtobool, config['forward']['require_decoding'].split(',')))
for data in forward_data_lst:
for k in range(len(forward_outs)):
if forward_dec_outs[k]:
print('Decoding %s output %s' % (data, forward_outs[k]))
info_file = out_folder + '/exp_files/decoding_' + \
data + '_' + forward_outs[k] + '.info'
# create decode config file
config_dec_file = out_folder + '/decoding_' + \
data + '_' + forward_outs[k] + '.conf'
config_dec = configparser.ConfigParser()
config_dec.add_section('decoding')
for dec_key in config['decoding'].keys():
config_dec.set('decoding', dec_key,
config['decoding'][dec_key])
# add graph_dir, datadir, alidir
lab_field = config[cfg_item2sec(config, 'data_name', data)]['lab']
# Production case, we don't have labels
if not is_production:
pattern = 'lab_folder=(.*)\nlab_opts=(.*)\nlab_count_file=(.*)\nlab_data_folder=(.*)\nlab_graph=(.*)'
alidir = re.findall(pattern, lab_field)[0][0]
config_dec.set('decoding', 'alidir', os.path.abspath(alidir))
datadir = re.findall(pattern, lab_field)[0][3]
config_dec.set('decoding', 'data', os.path.abspath(datadir))
graphdir = re.findall(pattern, lab_field)[0][4]
config_dec.set('decoding', 'graphdir',
os.path.abspath(graphdir))
else:
pattern = 'lab_data_folder=(.*)\nlab_graph=(.*)'
datadir = re.findall(pattern, lab_field)[0][0]
config_dec.set('decoding', 'data', os.path.abspath(datadir))
graphdir = re.findall(pattern, lab_field)[0][1]
config_dec.set('decoding', 'graphdir',
os.path.abspath(graphdir))
# The ali dir is supposed to be in exp/model/ which is one level ahead of graphdir
alidir = graphdir.split('/')[0:len(graphdir.split('/')) - 1]
alidir = "/".join(alidir)
config_dec.set('decoding', 'alidir', os.path.abspath(alidir))
with open(config_dec_file, 'w') as configfile:
config_dec.write(configfile)
out_folder = os.path.abspath(out_folder)
files_dec = out_folder + '/exp_files/forward_' + data + \
'_ep*_ck*_' + forward_outs[k] + '_to_decode.ark'
out_dec_folder = out_folder + '/decode_' + \
data + '_' + forward_outs[k]
if not (os.path.exists(info_file)):
# Run the decoder
cmd_decode = cmd + config['decoding']['decoding_script_folder'] + '/' + config['decoding'][
'decoding_script'] + ' ' + os.path.abspath(
config_dec_file) + ' ' + out_dec_folder + ' \"' + files_dec + '\"'
run_shell(cmd_decode, log_file)
# remove ark files if needed
if not forward_save_files[k]:
list_rem = glob.glob(files_dec)
for rem_ark in list_rem:
os.remove(rem_ark)
# Print WER results and write info file
cmd_res = './check_res_dec.sh ' + out_dec_folder
wers = run_shell(cmd_res, log_file).decode('utf-8')
res_file = open(res_file_path, "a")
res_file.write('%s\n' % wers)
print(wers)
# Saving Loss and Err as .txt and plotting curves
if not is_production:
create_curves(out_folder, N_ep, valid_data_lst)