-
Notifications
You must be signed in to change notification settings - Fork 0
/
quickstart_utils.py
219 lines (172 loc) · 7.85 KB
/
quickstart_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) 2022-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# See LICENSE for license information.
import math
from typing import Callable, Optional
import torch
import transformer_engine.pytorch as te
from transformer_engine.pytorch.fp8 import DelayedScaling, dist_group_type
def speedometer(
module: torch.nn.Module,
input: torch.Tensor,
output_grad: torch.Tensor,
forward_kwargs: dict = {},
fp8_autocast_kwargs: Optional[dict] = None,
timing_iters: int = 50,
warmup_iters: int = 50,
) -> None:
"""Measure average run time for a PyTorch module
Performs forward and backward passes.
"""
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
if fp8_autocast_kwargs is None:
fp8_autocast_kwargs = {"enabled": False}
# Warmup runs
torch.cuda.synchronize()
for _ in range(warmup_iters):
with te.fp8_autocast(**fp8_autocast_kwargs):
output = module(input, **forward_kwargs)
output.backward(output_grad)
# Timing runs
start.record()
for _ in range(timing_iters):
with te.fp8_autocast(**fp8_autocast_kwargs):
output = module(input, **forward_kwargs)
output.backward(output_grad)
end.record()
torch.cuda.synchronize()
print(f"Mean time: {start.elapsed_time(end)/timing_iters} ms")
class DotProductAttention(torch.nn.Module):
"""Attention operation in Transformer layer
Built with plain PyTorch modules.
"""
def __init__(
self,
num_attention_heads: int,
kv_channels: int,
attention_dropout: float,
) -> None:
super().__init__()
self.projection_size = kv_channels * num_attention_heads
self.hidden_size_per_attention_head = kv_channels
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
self.dropout = torch.nn.Dropout(attention_dropout)
def masked_softmax(self, inp: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
if mask is not None:
inp.masked_fill_(mask, -10000.0)
return torch.nn.Softmax(dim=-1)(inp)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
b = query.size(1)
np = query.size(2)
sq = query.size(0)
sk = key.size(0)
hn = value.size(3)
# [sq, b, np, hn] -> [sq, b * np, hn]
query = query.view(sq, b * np, -1)
# [sk, b, np, hn] -> [sk, b * np, hn]
key = key.view(sk, b * np, -1)
bmm1 = (
torch.bmm(query.transpose(0, 1), key.transpose(0, 1).transpose(1, 2)) / self.norm_factor
)
# change view to [b, np, sq, sk]
attention_scores = bmm1.view(b, np, sq, sk)
attention_probs = self.masked_softmax(attention_scores, attention_mask)
attention_probs = self.dropout(attention_probs)
# change view [sk, b * np, hn]
value = value.view(sk, b * np, -1)
# change view [b * np, sq, sk]
attention_probs = attention_probs.view(b * np, sq, -1)
# matmul: [b * np, sq, hn]
context = torch.bmm(attention_probs, value.transpose(0, 1))
# change view [b, np, sq, hn]
context = context.view(b, np, sq, hn)
# [b, np, sq, hn] --> [sq, b, np, hn]
context = context.permute(2, 0, 1, 3).contiguous()
# [sq, b, np, hn] --> [sq, b, hp]
context = context.view(sq, b, self.projection_size)
return context
class BasicMLP(torch.nn.Module):
"""Feed-forward network in Transformer layer
Built with plain PyTorch modules.
"""
def __init__(
self,
hidden_size: int,
ffn_hidden_size: int,
) -> None:
super().__init__()
self.linear1 = torch.nn.Linear(hidden_size, ffn_hidden_size, bias=True)
self.linear2 = torch.nn.Linear(ffn_hidden_size, hidden_size, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear1(x)
x = torch.nn.functional.gelu(x, approximate="tanh")
x = self.linear2(x)
return x
def share_parameters_with_basic_te_model(te_model, basic_model):
"""Initialize parameters for TE Transformer layer with basic modules
Parameter values are copied from pure PyTorch implementation.
"""
te_model.ln1.weight = basic_model.ln1.weight
te_model.ln1.bias = basic_model.ln1.bias
te_model.qkv_projection.weight = basic_model.qkv_projection.weight
te_model.qkv_projection.bias = basic_model.qkv_projection.bias
te_model.projection.weight = basic_model.projection.weight
te_model.projection.bias = basic_model.projection.bias
te_model.ln2.weight = basic_model.ln2.weight
te_model.ln2.bias = basic_model.ln2.bias
te_model.mlp.linear1.weight = basic_model.mlp.linear1.weight
te_model.mlp.linear1.bias = basic_model.mlp.linear1.bias
te_model.mlp.linear2.weight = basic_model.mlp.linear2.weight
te_model.mlp.linear2.bias = basic_model.mlp.linear2.bias
def share_parameters_with_fused_te_model(te_model, basic_model):
"""Initialize parameters for TE Transformer layer with fused modules
Parameter values are copied from pure PyTorch implementation.
"""
te_model.ln_qkv.layer_norm_weight = basic_model.ln1.weight
te_model.ln_qkv.layer_norm_bias = basic_model.ln1.bias
te_model.ln_qkv.weight = basic_model.qkv_projection.weight
te_model.ln_qkv.bias = basic_model.qkv_projection.bias
te_model.projection.weight = basic_model.projection.weight
te_model.projection.bias = basic_model.projection.bias
te_model.ln_mlp.layer_norm_weight = basic_model.ln2.weight
te_model.ln_mlp.layer_norm_bias = basic_model.ln2.bias
te_model.ln_mlp.fc1_weight = basic_model.mlp.linear1.weight
te_model.ln_mlp.fc1_bias = basic_model.mlp.linear1.bias
te_model.ln_mlp.fc2_weight = basic_model.mlp.linear2.weight
te_model.ln_mlp.fc2_bias = basic_model.mlp.linear2.bias
def share_parameters_with_transformerlayer_te_model(te_model, basic_model):
"""Initialize parameters for monolithic TE Transformer layer
Parameter values are copied from pure PyTorch implementation.
"""
te_model.self_attention.layernorm_qkv.layer_norm_weight = basic_model.ln1.weight
te_model.self_attention.layernorm_qkv.layer_norm_bias = basic_model.ln1.bias
te_model.self_attention.layernorm_qkv.weight = basic_model.qkv_projection.weight
te_model.self_attention.layernorm_qkv.bias = basic_model.qkv_projection.bias
te_model.self_attention.proj.weight = basic_model.projection.weight
te_model.self_attention.proj.bias = basic_model.projection.bias
te_model.layernorm_mlp.layer_norm_weight = basic_model.ln2.weight
te_model.layernorm_mlp.layer_norm_bias = basic_model.ln2.bias
te_model.layernorm_mlp.fc1_weight = basic_model.mlp.linear1.weight
te_model.layernorm_mlp.fc1_bias = basic_model.mlp.linear1.bias
te_model.layernorm_mlp.fc2_weight = basic_model.mlp.linear2.weight
te_model.layernorm_mlp.fc2_bias = basic_model.mlp.linear2.bias
def cast_to_representable(inp, scale=1.0, fp8_format="e4m3"):
import transformer_engine.pytorch.cpp_extensions as texcpp
import transformer_engine_torch as tex
from transformer_engine.pytorch.constants import TE_DType
fp8_type = tex.DType.kFloat8E4M3 if fp8_format == "e4m3" else tex.DType.kFloat8E5M2
input_type = TE_DType[inp.dtype]
meta = tex.FP8TensorMeta()
meta.scale = torch.ones(1, dtype=torch.float32, device="cuda") * scale
meta.scale_inv = torch.ones(1, dtype=torch.float32, device="cuda") / scale
meta.amax_history = torch.zeros(1, 1, dtype=torch.float32, device="cuda")
ret = texcpp.cast_to_fp8(inp, meta, tex.FP8FwdTensors.GEMM1_INPUT, fp8_type)
ret = texcpp.cast_from_fp8(ret, meta, tex.FP8FwdTensors.GEMM1_INPUT, fp8_type, input_type)
return ret