diff --git a/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification-3.4.csproj b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification-3.4.csproj
index 334aa94c69..6f74b2057b 100644
--- a/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification-3.4.csproj
+++ b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification-3.4.csproj
@@ -125,6 +125,8 @@
+
+
diff --git a/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator.cs b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator.cs
new file mode 100644
index 0000000000..20966b2122
--- /dev/null
+++ b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator.cs
@@ -0,0 +1,158 @@
+#region License Information
+/* HeuristicLab
+ * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
+ *
+ * This file is part of HeuristicLab.
+ *
+ * HeuristicLab is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * HeuristicLab is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HeuristicLab. If not, see .
+ */
+#endregion
+
+using System;
+using System.Collections.Generic;
+using System.Linq;
+using HEAL.Attic;
+using HeuristicLab.Common;
+using HeuristicLab.Core;
+using HeuristicLab.Data;
+using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
+using HeuristicLab.Parameters;
+using HeuristicLab.PluginInfrastructure;
+
+namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
+ [NonDiscoverableType]
+ [Item("Weighted Performance Measures Evaluator", "Calculates the quality of a symbolic classification solution based on three weighted measures(normalized mean squared error, false negative rate(1-sensitivity) and false positve rate(1-specificity)).")]
+ [StorableType("0772F316-5E12-4153-857E-8625069B4677")]
+ public class SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
+ private const string NormalizedMeanSquaredErrorWeightingFactorParameterName = "NormalizedMeanSquaredErrorWeightingFactor";
+ private const string FalseNegativeRateWeightingFactorParameterName = "FalseNegativeRateWeightingFactor";
+ private const string FalsePositiveRateWeightingFactorParameterName = "FalsePositiveRateWeightingFactor";
+ private const string ModelCreatorParameterName = "ModelCreator";
+
+ public override bool Maximization { get { return false; } }
+
+ #region parameter properties
+ public IFixedValueParameter NormalizedMeanSquaredErrorWeightingFactorParameter {
+ get { return (IFixedValueParameter)Parameters[NormalizedMeanSquaredErrorWeightingFactorParameterName]; }
+ }
+ public IFixedValueParameter FalseNegativeRateWeightingFactorParameter {
+ get { return (IFixedValueParameter)Parameters[FalseNegativeRateWeightingFactorParameterName]; }
+ }
+ public IFixedValueParameter FalsePositiveRateWeightingFactorParameter {
+ get { return (IFixedValueParameter)Parameters[FalsePositiveRateWeightingFactorParameterName]; }
+ }
+ public IValueLookupParameter ModelCreatorParameter {
+ get { return (IValueLookupParameter)Parameters[ModelCreatorParameterName]; }
+ }
+ #endregion
+
+ public double NormalizedMeanSquaredErrorWeightingFactor {
+ get { return NormalizedMeanSquaredErrorWeightingFactorParameter.Value.Value; }
+ }
+ public double FalseNegativeRateWeightingFactor {
+ get { return FalseNegativeRateWeightingFactorParameter.Value.Value; }
+ }
+ public double FalsePositiveRateWeightingFactor {
+ get { return FalsePositiveRateWeightingFactorParameter.Value.Value; }
+ }
+
+ [StorableConstructor]
+ protected SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator(StorableConstructorFlag _) : base(_) { }
+ protected SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator(SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator original, Cloner cloner)
+ : base(original, cloner) {
+ }
+ public override IDeepCloneable Clone(Cloner cloner) {
+ return new SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator(this, cloner);
+ }
+
+ public SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator()
+ : base() {
+ Parameters.Add(new FixedValueParameter(NormalizedMeanSquaredErrorWeightingFactorParameterName, "The weighting factor of the normalized mean squared error.", new DoubleValue(1)));
+ Parameters.Add(new FixedValueParameter(FalseNegativeRateWeightingFactorParameterName, "The weighting factor of the false negative rate (1-sensitivity).", new DoubleValue(1)));
+ Parameters.Add(new FixedValueParameter(FalsePositiveRateWeightingFactorParameterName, "The weighting factor of the false positive rate (1-specificity).", new DoubleValue(1)));
+ Parameters.Add(new ValueLookupParameter(ModelCreatorParameterName, "The model creator which is used during the evaluations."));
+ }
+
+ public override IOperation InstrumentedApply() {
+ IEnumerable rows = GenerateRowsToEvaluate();
+ var tree = SymbolicExpressionTreeParameter.ActualValue;
+ var creator = ModelCreatorParameter.ActualValue;
+ var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
+ var estimationLimits = EstimationLimitsParameter.ActualValue;
+ var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
+
+
+ double quality = Calculate(interpreter, tree, estimationLimits.Lower, estimationLimits.Upper,
+ ProblemDataParameter.ActualValue, rows, applyLinearScaling, creator, NormalizedMeanSquaredErrorWeightingFactor, FalseNegativeRateWeightingFactor, FalsePositiveRateWeightingFactor);
+ QualityParameter.ActualValue = new DoubleValue(quality);
+ return base.InstrumentedApply();
+ }
+
+ public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData,
+ IEnumerable rows, bool applyLinearScaling, ISymbolicClassificationModelCreator modelCreator, double normalizedMeanSquaredErrorWeightingFactor, double falseNegativeRateWeightingFactor, double falsePositiveRateWeightingFactor) {
+ var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, rows);
+ var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
+ var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit).ToArray();
+ OnlineCalculatorError errorState;
+ double nmse;
+
+ //calculate performance measures
+ string positiveClassName = problemData.PositiveClass;
+ double[] classValues, thresholds;
+ IEnumerable estimatedClassValues = null;
+ ISymbolicDiscriminantFunctionClassificationModel m;
+
+ var model = modelCreator.CreateSymbolicClassificationModel(problemData.TargetVariable, tree, interpreter, lowerEstimationLimit, upperEstimationLimit);
+ if ((m = model as ISymbolicDiscriminantFunctionClassificationModel) != null) {
+ m.ThresholdCalculator.Calculate(problemData, boundedEstimatedValues, targetClassValues, out classValues, out thresholds);
+ m.SetThresholdsAndClassValues(thresholds, classValues);
+ estimatedClassValues = m.GetEstimatedClassValues(boundedEstimatedValues);
+ } else {
+ model.RecalculateModelParameters(problemData, rows);
+ estimatedClassValues = model.GetEstimatedClassValues(problemData.Dataset, rows);
+ }
+
+ var performanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, problemData.GetClassValue(positiveClassName));
+ performanceCalculator.Calculate(targetClassValues, estimatedClassValues);
+ if (performanceCalculator.ErrorState != OnlineCalculatorError.None)
+ return Double.NaN;
+ double falseNegativeRate = 1 - performanceCalculator.TruePositiveRate;
+ double falsePositiveRate = performanceCalculator.FalsePositiveRate;
+
+ if (applyLinearScaling) {
+ throw new NotSupportedException("The Weighted Performance Measures Evaluator does not suppport linear scaling!");
+ }
+ nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(targetClassValues, boundedEstimatedValues, out errorState);
+ if (errorState != OnlineCalculatorError.None) return Double.NaN;
+ return normalizedMeanSquaredErrorWeightingFactor * nmse + falseNegativeRateWeightingFactor * falseNegativeRate + falsePositiveRateWeightingFactor * falsePositiveRate;
+ }
+
+ public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable rows) {
+ SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
+ EstimationLimitsParameter.ExecutionContext = context;
+ ApplyLinearScalingParameter.ExecutionContext = context;
+ ModelCreatorParameter.ExecutionContext = context;
+
+ double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper,
+ problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, ModelCreatorParameter.ActualValue, NormalizedMeanSquaredErrorWeightingFactorParameter.Value.Value, FalseNegativeRateWeightingFactor, FalsePositiveRateWeightingFactor);
+
+ SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
+ EstimationLimitsParameter.ExecutionContext = null;
+ ApplyLinearScalingParameter.ExecutionContext = null;
+ ModelCreatorParameter.ExecutionContext = null;
+
+ return quality;
+ }
+ }
+}
diff --git a/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator.cs b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator.cs
new file mode 100644
index 0000000000..3b0bfbf511
--- /dev/null
+++ b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator.cs
@@ -0,0 +1,141 @@
+#region License Information
+/* HeuristicLab
+ * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
+ *
+ * This file is part of HeuristicLab.
+ *
+ * HeuristicLab is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * HeuristicLab is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HeuristicLab. If not, see .
+ */
+#endregion
+
+using System;
+using System.Collections.Generic;
+using System.Linq;
+using HEAL.Attic;
+using HeuristicLab.Common;
+using HeuristicLab.Core;
+using HeuristicLab.Data;
+using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
+using HeuristicLab.Parameters;
+using HeuristicLab.PluginInfrastructure;
+
+namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
+ [NonDiscoverableType]
+ [Item("Weighted Residuals Mean Squared Error Evaluator", @"A modified mean squared error evaluator that enables the possibility to weight residuals differently.
+The first residual category belongs to estimated values which definitely belong to a specific class because the estimated value is located above the maximum or below the minimum of all the class values (DefiniteResidualsWeight).
+The second residual category represents residuals which belong to the positive class whereby the estimated value is located between the positive and a negative class (PositiveClassResidualsWeight).
+All other cases are represented by the third category (NegativeClassesResidualsWeight).
+The weight gets multiplied to the squared error. Note that the Evaluator acts like a normal MSE-Evaluator if all the weights are set to 1.")]
+ [StorableType("A3193296-1A0F-46E2-8F43-22E2ED9CFFC5")]
+ public sealed class SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
+ private const string DefiniteResidualsWeightParameterName = "DefiniteResidualsWeight";
+ private const string PositiveClassResidualsWeightParameterName = "PositiveClassResidualsWeight";
+ private const string NegativeClassesResidualsWeightParameterName = "NegativeClassesResidualsWeight";
+ [StorableConstructor]
+ private SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator(StorableConstructorFlag _) : base(_) { }
+ private SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator original, Cloner cloner)
+ : base(original, cloner) {
+ }
+ public override IDeepCloneable Clone(Cloner cloner) {
+ return new SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator(this, cloner);
+ }
+
+ public SymbolicClassificationSingleObjectiveWeightedResidualsMeanSquaredErrorEvaluator()
+ : base() {
+ Parameters.Add(new FixedValueParameter(DefiniteResidualsWeightParameterName, "Weight of residuals which definitely belong to a specific class because the estimated values is located above the maximum or below the minimum of all the class values.", new DoubleValue(1)));
+ Parameters.Add(new FixedValueParameter(PositiveClassResidualsWeightParameterName, "Weight of residuals which belong to the positive class whereby the estimated value is located between the positive and a negative class.", new DoubleValue(1)));
+ Parameters.Add(new FixedValueParameter(NegativeClassesResidualsWeightParameterName, "Weight of residuals which are not covered by the DefiniteResidualsWeight or the PositiveClassResidualsWeight.", new DoubleValue(1)));
+ }
+
+ #region parameter properties
+ public IFixedValueParameter DefiniteResidualsWeightParameter {
+ get { return (IFixedValueParameter)Parameters[DefiniteResidualsWeightParameterName]; }
+ }
+ public IFixedValueParameter PositiveClassResidualsWeightParameter {
+ get { return (IFixedValueParameter)Parameters[PositiveClassResidualsWeightParameterName]; }
+ }
+ public IFixedValueParameter NegativeClassesResidualsWeightParameter {
+ get { return (IFixedValueParameter)Parameters[NegativeClassesResidualsWeightParameterName]; }
+ }
+ #endregion
+
+ #region properties
+ public override bool Maximization { get { return false; } }
+
+ public double DefiniteResidualsWeight {
+ get { return DefiniteResidualsWeightParameter.Value.Value; }
+ }
+ public double PositiveClassResidualsWeight {
+ get { return PositiveClassResidualsWeightParameter.Value.Value; }
+ }
+ public double NegativeClassesResidualsWeight {
+ get { return NegativeClassesResidualsWeightParameter.Value.Value; }
+ }
+ #endregion
+
+ public override IOperation InstrumentedApply() {
+ IEnumerable rows = GenerateRowsToEvaluate();
+ var solution = SymbolicExpressionTreeParameter.ActualValue;
+ double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value,
+ DefiniteResidualsWeight, PositiveClassResidualsWeight, NegativeClassesResidualsWeight);
+ QualityParameter.ActualValue = new DoubleValue(quality);
+ return base.InstrumentedApply();
+ }
+
+ public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable rows, bool applyLinearScaling,
+ double definiteResidualsWeight, double positiveClassResidualsWeight, double negativeClassesResidualsWeight) {
+ IEnumerable estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, rows);
+ IEnumerable targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
+ OnlineCalculatorError errorState;
+
+ double positiveClassValue = problemData.GetClassValue(problemData.PositiveClass);
+ //get class values min/max
+ double classValuesMin = problemData.ClassValues.ElementAtOrDefault(0);
+ double classValuesMax = classValuesMin;
+ foreach (double classValue in problemData.ClassValues) {
+ if (classValuesMin > classValue) classValuesMin = classValue;
+ if (classValuesMax < classValue) classValuesMax = classValue;
+ }
+
+ double quality;
+ if (applyLinearScaling) {
+ var calculator = new OnlineWeightedClassificationMeanSquaredErrorCalculator(positiveClassValue, classValuesMax, classValuesMin,
+ definiteResidualsWeight, positiveClassResidualsWeight, negativeClassesResidualsWeight);
+ CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, calculator, problemData.Dataset.Rows);
+ errorState = calculator.ErrorState;
+ quality = calculator.WeightedResidualsMeanSquaredError;
+ } else {
+ IEnumerable boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
+ quality = OnlineWeightedClassificationMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, positiveClassValue, classValuesMax,
+ classValuesMin, definiteResidualsWeight, positiveClassResidualsWeight, negativeClassesResidualsWeight, out errorState);
+ }
+ if (errorState != OnlineCalculatorError.None) return Double.NaN;
+ return quality;
+ }
+
+ public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable rows) {
+ SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
+ EstimationLimitsParameter.ExecutionContext = context;
+ ApplyLinearScalingParameter.ExecutionContext = context;
+
+ double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DefiniteResidualsWeight, PositiveClassResidualsWeight, NegativeClassesResidualsWeight);
+
+ SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
+ EstimationLimitsParameter.ExecutionContext = null;
+ ApplyLinearScalingParameter.ExecutionContext = null;
+
+ return quality;
+ }
+ }
+}
diff --git a/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs
index d46d5b1348..4bc5ab8369 100644
--- a/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs
+++ b/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs
@@ -111,8 +111,12 @@ public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable
}
public override IEnumerable GetEstimatedClassValues(IDataset dataset, IEnumerable rows) {
+ var estimatedValues = GetEstimatedValues(dataset, rows);
+ return GetEstimatedClassValues(estimatedValues);
+ }
+ public IEnumerable GetEstimatedClassValues(IEnumerable estimatedValues) {
if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current symbolic classification model.");
- foreach (var x in GetEstimatedValues(dataset, rows)) {
+ foreach (var x in estimatedValues) {
int classIndex = 0;
// find first threshold value which is larger than x => class index = threshold index + 1
for (int i = 0; i < thresholds.Length; i++) {
@@ -123,7 +127,6 @@ public override IEnumerable GetEstimatedClassValues(IDataset dataset, IE
}
}
-
public override ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
return CreateDiscriminantClassificationSolution(problemData);
}
diff --git a/HeuristicLab.Problems.DataAnalysis/3.4/HeuristicLab.Problems.DataAnalysis-3.4.csproj b/HeuristicLab.Problems.DataAnalysis/3.4/HeuristicLab.Problems.DataAnalysis-3.4.csproj
index 64da2d452d..3769b425d0 100644
--- a/HeuristicLab.Problems.DataAnalysis/3.4/HeuristicLab.Problems.DataAnalysis-3.4.csproj
+++ b/HeuristicLab.Problems.DataAnalysis/3.4/HeuristicLab.Problems.DataAnalysis-3.4.csproj
@@ -243,6 +243,7 @@
+
diff --git a/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationModel.cs b/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationModel.cs
index 4760dcedbe..eb4552f0a4 100644
--- a/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationModel.cs
+++ b/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationModel.cs
@@ -22,9 +22,9 @@
using System;
using System.Collections.Generic;
using System.Linq;
+using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
-using HEAL.Attic;
namespace HeuristicLab.Problems.DataAnalysis {
///
@@ -120,8 +120,13 @@ public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable
}
public override IEnumerable GetEstimatedClassValues(IDataset dataset, IEnumerable rows) {
+ var estimatedValues = GetEstimatedValues(dataset, rows);
+ return GetEstimatedClassValues(estimatedValues);
+ }
+
+ public virtual IEnumerable GetEstimatedClassValues(IEnumerable estimatedValues) {
if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current classification model.");
- foreach (var x in GetEstimatedValues(dataset, rows)) {
+ foreach (var x in estimatedValues) {
int classIndex = 0;
// find first threshold value which is larger than x => class index = threshold index + 1
for (int i = 0; i < thresholds.Length; i++) {
@@ -131,6 +136,7 @@ public override IEnumerable GetEstimatedClassValues(IDataset dataset, IE
yield return classValues.ElementAt(classIndex - 1);
}
}
+
#region events
public event EventHandler ThresholdsChanged;
protected virtual void OnThresholdsChanged(EventArgs e) {
diff --git a/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Classification/IDiscriminantFunctionClassificationModel.cs b/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Classification/IDiscriminantFunctionClassificationModel.cs
index b9dfcf0f95..7d00497da6 100644
--- a/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Classification/IDiscriminantFunctionClassificationModel.cs
+++ b/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Classification/IDiscriminantFunctionClassificationModel.cs
@@ -33,6 +33,7 @@ public interface IDiscriminantFunctionClassificationModel : IClassificationModel
// class values and thresholds can only be assigned simultanously
void SetThresholdsAndClassValues(IEnumerable thresholds, IEnumerable classValues);
IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows);
+ IEnumerable GetEstimatedClassValues(IEnumerable estimatedValues);
event EventHandler ThresholdsChanged;
diff --git a/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineWeightedClassificationMeanSquaredErrorCalculator.cs b/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineWeightedClassificationMeanSquaredErrorCalculator.cs
new file mode 100644
index 0000000000..bdf87a3397
--- /dev/null
+++ b/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineWeightedClassificationMeanSquaredErrorCalculator.cs
@@ -0,0 +1,115 @@
+#region License Information
+/* HeuristicLab
+ * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
+ *
+ * This file is part of HeuristicLab.
+ *
+ * HeuristicLab is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * HeuristicLab is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HeuristicLab. If not, see .
+ */
+#endregion
+
+using System;
+using System.Collections.Generic;
+using HeuristicLab.Common;
+
+namespace HeuristicLab.Problems.DataAnalysis {
+ public class OnlineWeightedClassificationMeanSquaredErrorCalculator : IOnlineCalculator {
+
+ private double sse;
+ private int n;
+ public double WeightedResidualsMeanSquaredError {
+ get {
+ return n > 0 ? sse / n : 0.0;
+ }
+ }
+
+ public double PositiveClassValue { get; private set; }
+ public double ClassValuesMax { get; private set; }
+ public double ClassValuesMin { get; private set; }
+ public double DefiniteResidualsWeight { get; private set; }
+ public double PositiveClassResidualsWeight { get; private set; }
+ public double NegativeClassesResidualsWeight { get; private set; }
+
+ public OnlineWeightedClassificationMeanSquaredErrorCalculator(double positiveClassValue, double classValuesMax, double classValuesMin,
+ double definiteResidualsWeight, double positiveClassResidualsWeight, double negativeClassesResidualsWeight) {
+ PositiveClassValue = positiveClassValue;
+ ClassValuesMax = classValuesMax;
+ ClassValuesMin = classValuesMin;
+ DefiniteResidualsWeight = definiteResidualsWeight;
+ PositiveClassResidualsWeight = positiveClassResidualsWeight;
+ NegativeClassesResidualsWeight = negativeClassesResidualsWeight;
+ Reset();
+ }
+
+ #region IOnlineCalculator Members
+ private OnlineCalculatorError errorState;
+ public OnlineCalculatorError ErrorState {
+ get { return errorState; }
+ }
+ public double Value {
+ get { return WeightedResidualsMeanSquaredError; }
+ }
+ public void Reset() {
+ n = 0;
+ sse = 0.0;
+ errorState = OnlineCalculatorError.InsufficientElementsAdded;
+ }
+
+ public void Add(double original, double estimated) {
+ if (double.IsNaN(estimated) || double.IsInfinity(estimated) ||
+ double.IsNaN(original) || double.IsInfinity(original) || (errorState & OnlineCalculatorError.InvalidValueAdded) > 0) {
+ errorState = errorState | OnlineCalculatorError.InvalidValueAdded;
+ } else {
+ double error = estimated - original;
+ double weight;
+ //apply weight
+ if (estimated > ClassValuesMax || estimated < ClassValuesMin) {
+ weight = DefiniteResidualsWeight;
+ } else if (original.IsAlmost(PositiveClassValue)) {
+ weight = PositiveClassResidualsWeight;
+ } else {
+ weight = NegativeClassesResidualsWeight;
+ }
+ sse += error * error * weight;
+ n++;
+ errorState = errorState & (~OnlineCalculatorError.InsufficientElementsAdded); // n >= 1
+ }
+ }
+ #endregion
+
+ public static double Calculate(IEnumerable originalValues, IEnumerable estimatedValues, double positiveClassValue, double classValuesMax, double classValuesMin,
+ double definiteResidualsWeight, double positiveClassResidualsWeight, double negativeClassesResidualsWeight, out OnlineCalculatorError errorState) {
+ IEnumerator originalEnumerator = originalValues.GetEnumerator();
+ IEnumerator estimatedEnumerator = estimatedValues.GetEnumerator();
+ OnlineWeightedClassificationMeanSquaredErrorCalculator calculator = new OnlineWeightedClassificationMeanSquaredErrorCalculator(positiveClassValue, classValuesMax, classValuesMin, definiteResidualsWeight, positiveClassResidualsWeight, negativeClassesResidualsWeight);
+
+ // always move forward both enumerators (do not use short-circuit evaluation!)
+ while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
+ double original = originalEnumerator.Current;
+ double estimated = estimatedEnumerator.Current;
+ calculator.Add(original, estimated);
+ if (calculator.ErrorState != OnlineCalculatorError.None) break;
+ }
+
+ // check if both enumerators are at the end to make sure both enumerations have the same length
+ if (calculator.ErrorState == OnlineCalculatorError.None &&
+ (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) {
+ throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match.");
+ } else {
+ errorState = calculator.ErrorState;
+ return calculator.WeightedResidualsMeanSquaredError;
+ }
+ }
+ }
+}