-
Notifications
You must be signed in to change notification settings - Fork 141
/
Char8.hs
943 lines (817 loc) · 29.6 KB
/
Char8.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_HADDOCK prune #-}
-- |
-- Module : Data.ByteString.Lazy.Char8
-- Copyright : (c) Don Stewart 2006-2008
-- (c) Duncan Coutts 2006-2011
-- License : BSD-style
--
-- Maintainer : [email protected], [email protected]
-- Stability : stable
-- Portability : portable
--
-- Manipulate /lazy/ 'ByteString's using 'Char' operations. All Chars will
-- be truncated to 8 bits. It can be expected that these functions will
-- run at identical speeds to their 'Data.Word.Word8' equivalents in
-- "Data.ByteString.Lazy".
--
-- This module is intended to be imported @qualified@, to avoid name
-- clashes with "Prelude" functions. eg.
--
-- > import qualified Data.ByteString.Lazy.Char8 as C
--
-- The Char8 interface to bytestrings provides an instance of IsString
-- for the ByteString type, enabling you to use string literals, and
-- have them implicitly packed to ByteStrings.
-- Use @{-\# LANGUAGE OverloadedStrings \#-}@ to enable this.
--
module Data.ByteString.Lazy.Char8 (
-- * The @ByteString@ type
ByteString,
-- * Introducing and eliminating 'ByteString's
empty,
singleton,
pack,
unpack,
fromChunks,
toChunks,
fromStrict,
toStrict,
-- * Basic interface
cons,
cons',
snoc,
append,
head,
uncons,
last,
tail,
unsnoc,
init,
null,
length,
-- * Transforming ByteStrings
map,
reverse,
intersperse,
intercalate,
transpose,
-- * Reducing 'ByteString's (folds)
foldl,
foldl',
foldl1,
foldl1',
foldr,
foldr',
foldr1,
foldr1',
-- ** Special folds
concat,
concatMap,
any,
all,
maximum,
minimum,
compareLength,
-- * Building ByteStrings
-- ** Scans
scanl,
scanl1,
scanr,
scanr1,
-- ** Accumulating maps
mapAccumL,
mapAccumR,
-- ** Infinite ByteStrings
repeat,
replicate,
cycle,
iterate,
-- ** Unfolding ByteStrings
unfoldr,
-- * Substrings
-- ** Breaking strings
take,
takeEnd,
drop,
dropEnd,
splitAt,
takeWhile,
takeWhileEnd,
dropWhile,
dropWhileEnd,
span,
spanEnd,
break,
breakEnd,
group,
groupBy,
inits,
tails,
initsNE,
tailsNE,
stripPrefix,
stripSuffix,
-- ** Breaking into many substrings
split,
splitWith,
-- ** Breaking into lines and words
lines,
words,
unlines,
unwords,
-- * Predicates
isPrefixOf,
isSuffixOf,
-- * Searching ByteStrings
-- ** Searching by equality
elem,
notElem,
-- ** Searching with a predicate
find,
filter,
partition,
-- * Indexing ByteStrings
index,
indexMaybe,
(!?),
elemIndex,
elemIndexEnd,
elemIndices,
findIndex,
findIndexEnd,
findIndices,
count,
-- * Zipping and unzipping ByteStrings
zip,
zipWith,
packZipWith,
unzip,
-- * Ordered ByteStrings
-- sort,
-- * Low level conversions
-- ** Copying ByteStrings
copy,
-- * Reading from ByteStrings
-- | Note that a lazy 'ByteString' may hold an unbounded stream of
-- @\'0\'@ digits, in which case the functions below may never return.
-- If that's a concern, you can use 'take' to first truncate the input
-- to an acceptable length. Non-termination is also possible when
-- reading arbitrary precision numbers via 'readInteger' or
-- 'readNatural', if the input is an unbounded stream of arbitrary
-- decimal digits.
--
readInt,
readInt64,
readInt32,
readInt16,
readInt8,
readWord,
readWord64,
readWord32,
readWord16,
readWord8,
readInteger,
readNatural,
-- * I\/O with 'ByteString's
-- | ByteString I/O uses binary mode, without any character decoding
-- or newline conversion. The fact that it does not respect the Handle
-- newline mode is considered a flaw and may be changed in a future version.
-- ** Standard input and output
getContents,
putStr,
putStrLn,
interact,
-- ** Files
readFile,
writeFile,
appendFile,
-- ** I\/O with Handles
hGetContents,
hGet,
hGetNonBlocking,
hPut,
hPutNonBlocking,
hPutStr,
hPutStrLn,
) where
-- Functions transparently exported
import Data.ByteString.Lazy
(fromChunks, toChunks
,empty,null,length,tail,init,append,reverse,transpose,cycle
,concat,take,takeEnd,drop,dropEnd,splitAt,intercalate
,isPrefixOf,isSuffixOf,group,inits,tails,initsNE,tailsNE,copy
,stripPrefix,stripSuffix
,hGetContents, hGet, hPut, getContents
,hGetNonBlocking, hPutNonBlocking
,putStr, hPutStr, interact
,readFile,writeFile,appendFile,compareLength)
-- Functions we need to wrap.
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString as S (ByteString) -- typename only
import qualified Data.ByteString as B
import qualified Data.ByteString.Unsafe as B
import Data.List.NonEmpty (NonEmpty(..))
import Data.ByteString.Lazy.Internal
import Data.ByteString.Lazy.ReadInt
import Data.ByteString.Lazy.ReadNat
import Data.ByteString.Internal (c2w,w2c,isSpaceWord8)
import Data.Int (Int64)
import qualified Data.List as List
import Prelude hiding
(reverse,head,tail,last,init,Foldable(..),map,lines,unlines
,concat,any,take,drop,splitAt,takeWhile,dropWhile,span,break,filter
,unwords,words,all,concatMap,scanl,scanl1,scanr,scanr1
,readFile,writeFile,appendFile,replicate,getContents,getLine,putStr,putStrLn
,zip,zipWith,unzip,notElem,repeat,iterate,interact,cycle)
import System.IO (Handle, stdout)
------------------------------------------------------------------------
-- | /O(1)/ Convert a 'Char' into a 'ByteString'
singleton :: Char -> ByteString
singleton = L.singleton . c2w
{-# INLINE singleton #-}
-- | /O(n)/ Convert a 'String' into a 'ByteString'.
pack :: [Char] -> ByteString
pack = packChars
-- | /O(n)/ Converts a 'ByteString' to a 'String'.
unpack :: ByteString -> [Char]
unpack = unpackChars
infixr 5 `cons`, `cons'` --same as list (:)
infixl 5 `snoc`
-- | /O(1)/ 'cons' is analogous to '(Prelude.:)' for lists.
cons :: Char -> ByteString -> ByteString
cons = L.cons . c2w
{-# INLINE cons #-}
-- | /O(1)/ Unlike 'cons', 'cons'' is
-- strict in the ByteString that we are consing onto. More precisely, it forces
-- the head and the first chunk. It does this because, for space efficiency, it
-- may coalesce the new byte onto the first \'chunk\' rather than starting a
-- new \'chunk\'.
--
-- So that means you can't use a lazy recursive contruction like this:
--
-- > let xs = cons' c xs in xs
--
-- You can however use 'cons', as well as 'repeat' and 'cycle', to build
-- infinite lazy ByteStrings.
--
cons' :: Char -> ByteString -> ByteString
cons' = L.cons' . c2w
{-# INLINE cons' #-}
-- | /O(n)/ Append a Char to the end of a 'ByteString'. Similar to
-- 'cons', this function performs a memcpy.
snoc :: ByteString -> Char -> ByteString
snoc p = L.snoc p . c2w
{-# INLINE snoc #-}
-- | /O(1)/ Extract the first element of a ByteString, which must be non-empty.
head :: ByteString -> Char
head = w2c . L.head
{-# INLINE head #-}
-- | /O(1)/ Extract the head and tail of a ByteString, returning Nothing
-- if it is empty.
uncons :: ByteString -> Maybe (Char, ByteString)
uncons bs = case L.uncons bs of
Nothing -> Nothing
Just (w, bs') -> Just (w2c w, bs')
{-# INLINE uncons #-}
-- | /O(n\/c)/ Extract the 'init' and 'last' of a ByteString, returning Nothing
-- if it is empty.
unsnoc :: ByteString -> Maybe (ByteString, Char)
unsnoc bs = case L.unsnoc bs of
Nothing -> Nothing
Just (bs', w) -> Just (bs', w2c w)
{-# INLINE unsnoc #-}
-- | /O(1)/ Extract the last element of a packed string, which must be non-empty.
last :: ByteString -> Char
last = w2c . L.last
{-# INLINE last #-}
-- | /O(n)/ 'map' @f xs@ is the ByteString obtained by applying @f@ to each element of @xs@
map :: (Char -> Char) -> ByteString -> ByteString
map f = L.map (c2w . f . w2c)
{-# INLINE map #-}
-- | /O(n)/ The 'intersperse' function takes a Char and a 'ByteString'
-- and \`intersperses\' that Char between the elements of the
-- 'ByteString'. It is analogous to the intersperse function on Lists.
intersperse :: Char -> ByteString -> ByteString
intersperse = L.intersperse . c2w
{-# INLINE intersperse #-}
-- | 'foldl', applied to a binary operator, a starting value (typically
-- the left-identity of the operator), and a ByteString, reduces the
-- ByteString using the binary operator, from left to right.
foldl :: (a -> Char -> a) -> a -> ByteString -> a
foldl f = L.foldl (\a c -> f a (w2c c))
{-# INLINE foldl #-}
-- | 'foldl'' is like foldl, but strict in the accumulator.
foldl' :: (a -> Char -> a) -> a -> ByteString -> a
foldl' f = L.foldl' (\a c -> f a (w2c c))
{-# INLINE foldl' #-}
-- | 'foldr', applied to a binary operator, a starting value
-- (typically the right-identity of the operator), and a packed string,
-- reduces the packed string using the binary operator, from right to left.
foldr :: (Char -> a -> a) -> a -> ByteString -> a
foldr f = L.foldr (f . w2c)
{-# INLINE foldr #-}
-- | 'foldr'' is like 'foldr', but strict in the accumulator.
--
-- @since 0.11.2.0
foldr' :: (Char -> a -> a) -> a -> ByteString -> a
foldr' f = L.foldr' (f . w2c)
-- | 'foldl1' is a variant of 'foldl' that has no starting value
-- argument, and thus must be applied to non-empty 'ByteString's.
foldl1 :: (Char -> Char -> Char) -> ByteString -> Char
foldl1 f ps = w2c (L.foldl1 (\x y -> c2w (f (w2c x) (w2c y))) ps)
{-# INLINE foldl1 #-}
-- | 'foldl1'' is like 'foldl1', but strict in the accumulator.
foldl1' :: (Char -> Char -> Char) -> ByteString -> Char
foldl1' f ps = w2c (L.foldl1' (\x y -> c2w (f (w2c x) (w2c y))) ps)
-- | 'foldr1' is a variant of 'foldr' that has no starting value argument,
-- and thus must be applied to non-empty 'ByteString's
foldr1 :: (Char -> Char -> Char) -> ByteString -> Char
foldr1 f ps = w2c (L.foldr1 (\x y -> c2w (f (w2c x) (w2c y))) ps)
{-# INLINE foldr1 #-}
-- | 'foldr1'' is like 'foldr1', but strict in the accumulator.
--
-- @since 0.11.2.0
foldr1' :: (Char -> Char -> Char) -> ByteString -> Char
foldr1' f ps = w2c (L.foldr1' (\x y -> c2w (f (w2c x) (w2c y))) ps)
-- | Map a function over a 'ByteString' and concatenate the results
concatMap :: (Char -> ByteString) -> ByteString -> ByteString
concatMap f = L.concatMap (f . w2c)
{-# INLINE concatMap #-}
-- | Applied to a predicate and a ByteString, 'any' determines if
-- any element of the 'ByteString' satisfies the predicate.
any :: (Char -> Bool) -> ByteString -> Bool
any f = L.any (f . w2c)
{-# INLINE any #-}
-- | Applied to a predicate and a 'ByteString', 'all' determines if
-- all elements of the 'ByteString' satisfy the predicate.
all :: (Char -> Bool) -> ByteString -> Bool
all f = L.all (f . w2c)
{-# INLINE all #-}
-- | 'maximum' returns the maximum value from a 'ByteString'
maximum :: ByteString -> Char
maximum = w2c . L.maximum
{-# INLINE maximum #-}
-- | 'minimum' returns the minimum value from a 'ByteString'
minimum :: ByteString -> Char
minimum = w2c . L.minimum
{-# INLINE minimum #-}
-- ---------------------------------------------------------------------
-- Building ByteStrings
-- | 'scanl' is similar to 'foldl', but returns a list of successive
-- reduced values from the left.
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
--
-- Note that
--
-- > last (scanl f z xs) == foldl f z xs.
scanl :: (Char -> Char -> Char) -> Char -> ByteString -> ByteString
scanl f z = L.scanl (\a b -> c2w (f (w2c a) (w2c b))) (c2w z)
-- | 'scanl1' is a variant of 'scanl' that has no starting value argument.
--
-- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
--
-- @since 0.11.2.0
scanl1 :: (Char -> Char -> Char) -> ByteString -> ByteString
scanl1 f = L.scanl1 f'
where f' accumulator value = c2w (f (w2c accumulator) (w2c value))
-- | 'scanr' is similar to 'foldr', but returns a list of successive
-- reduced values from the right.
--
-- > scanr f z [..., x{n-1}, xn] == [..., x{n-1} `f` (xn `f` z), xn `f` z, z]
--
-- Note that
--
-- > head (scanr f z xs) == foldr f z xs
-- > last (scanr f z xs) == z
--
-- @since 0.11.2.0
scanr
:: (Char -> Char -> Char)
-- ^ element -> accumulator -> new accumulator
-> Char
-- ^ starting value of accumulator
-> ByteString
-- ^ input of length n
-> ByteString
-- ^ output of length n+1
scanr f = L.scanr f' . c2w
where f' accumulator value = c2w (f (w2c accumulator) (w2c value))
-- | 'scanr1' is a variant of 'scanr' that has no starting value argument.
--
-- @since 0.11.2.0
scanr1 :: (Char -> Char -> Char) -> ByteString -> ByteString
scanr1 f = L.scanr1 f'
where f' accumulator value = c2w (f (w2c accumulator) (w2c value))
-- | The 'mapAccumL' function behaves like a combination of 'map' and
-- 'foldl'; it applies a function to each element of a ByteString,
-- passing an accumulating parameter from left to right, and returning a
-- final value of this accumulator together with the new ByteString.
mapAccumL :: (acc -> Char -> (acc, Char)) -> acc -> ByteString -> (acc, ByteString)
mapAccumL f = L.mapAccumL (\a w -> case f a (w2c w) of (a',c) -> (a', c2w c))
-- | The 'mapAccumR' function behaves like a combination of 'map' and
-- 'foldr'; it applies a function to each element of a ByteString,
-- passing an accumulating parameter from right to left, and returning a
-- final value of this accumulator together with the new ByteString.
mapAccumR :: (acc -> Char -> (acc, Char)) -> acc -> ByteString -> (acc, ByteString)
mapAccumR f = L.mapAccumR (\acc w -> case f acc (w2c w) of (acc', c) -> (acc', c2w c))
------------------------------------------------------------------------
-- Generating and unfolding ByteStrings
-- | @'iterate' f x@ returns an infinite ByteString of repeated applications
-- of @f@ to @x@:
--
-- > iterate f x == [x, f x, f (f x), ...]
--
iterate :: (Char -> Char) -> Char -> ByteString
iterate f = L.iterate (c2w . f . w2c) . c2w
-- | @'repeat' x@ is an infinite ByteString, with @x@ the value of every
-- element.
--
repeat :: Char -> ByteString
repeat = L.repeat . c2w
-- | /O(n)/ @'replicate' n x@ is a ByteString of length @n@ with @x@
-- the value of every element.
--
replicate :: Int64 -> Char -> ByteString
replicate w c = L.replicate w (c2w c)
-- | /O(n)/ The 'unfoldr' function is analogous to the List \'unfoldr\'.
-- 'unfoldr' builds a ByteString from a seed value. The function takes
-- the element and returns 'Nothing' if it is done producing the
-- ByteString or returns 'Just' @(a,b)@, in which case, @a@ is a
-- prepending to the ByteString and @b@ is used as the next element in a
-- recursive call.
unfoldr :: (a -> Maybe (Char, a)) -> a -> ByteString
unfoldr f = L.unfoldr $ \a -> case f a of
Nothing -> Nothing
Just (c, a') -> Just (c2w c, a')
------------------------------------------------------------------------
-- | 'takeWhile', applied to a predicate @p@ and a ByteString @xs@,
-- returns the longest prefix (possibly empty) of @xs@ of elements that
-- satisfy @p@.
takeWhile :: (Char -> Bool) -> ByteString -> ByteString
takeWhile f = L.takeWhile (f . w2c)
{-# INLINE takeWhile #-}
-- | Returns the longest (possibly empty) suffix of elements
-- satisfying the predicate.
--
-- @'takeWhileEnd' p@ is equivalent to @'reverse' . 'takeWhile' p . 'reverse'@.
--
-- @since 0.11.2.0
takeWhileEnd :: (Char -> Bool) -> ByteString -> ByteString
takeWhileEnd f = L.takeWhileEnd (f . w2c)
{-# INLINE takeWhileEnd #-}
-- | 'dropWhile' @p xs@ returns the suffix remaining after 'takeWhile' @p xs@.
dropWhile :: (Char -> Bool) -> ByteString -> ByteString
dropWhile f = L.dropWhile (f . w2c)
{-# INLINE dropWhile #-}
-- | Similar to 'P.dropWhileEnd',
-- drops the longest (possibly empty) suffix of elements
-- satisfying the predicate and returns the remainder.
--
-- @'dropWhileEnd' p@ is equivalent to @'reverse' . 'dropWhile' p . 'reverse'@.
--
-- @since 0.11.2.0
dropWhileEnd :: (Char -> Bool) -> ByteString -> ByteString
dropWhileEnd f = L.dropWhileEnd (f . w2c)
{-# INLINE dropWhileEnd #-}
-- | 'break' @p@ is equivalent to @'span' ('not' . p)@.
break :: (Char -> Bool) -> ByteString -> (ByteString, ByteString)
break f = L.break (f . w2c)
{-# INLINE break #-}
-- | 'breakEnd' behaves like 'break' but from the end of the 'ByteString'
--
-- breakEnd p == spanEnd (not.p)
--
-- @since 0.11.2.0
breakEnd :: (Char -> Bool) -> ByteString -> (ByteString, ByteString)
breakEnd f = L.breakEnd (f . w2c)
{-# INLINE breakEnd #-}
-- | 'span' @p xs@ breaks the ByteString into two segments. It is
-- equivalent to @('takeWhile' p xs, 'dropWhile' p xs)@
span :: (Char -> Bool) -> ByteString -> (ByteString, ByteString)
span f = L.span (f . w2c)
{-# INLINE span #-}
-- | 'spanEnd' behaves like 'span' but from the end of the 'ByteString'.
-- We have
--
-- > spanEnd (not.isSpace) "x y z" == ("x y ","z")
--
-- and
--
-- > spanEnd (not . isSpace) ps
-- > ==
-- > let (x,y) = span (not.isSpace) (reverse ps) in (reverse y, reverse x)
--
-- @since 0.11.2.0
spanEnd :: (Char -> Bool) -> ByteString -> (ByteString, ByteString)
spanEnd f = L.spanEnd (f . w2c)
{-# INLINE spanEnd #-}
{-
-- | 'breakChar' breaks its ByteString argument at the first occurrence
-- of the specified Char. It is more efficient than 'break' as it is
-- implemented with @memchr(3)@. I.e.
--
-- > break (=='c') "abcd" == breakChar 'c' "abcd"
--
breakChar :: Char -> ByteString -> (ByteString, ByteString)
breakChar = L.breakByte . c2w
{-# INLINE breakChar #-}
-- | 'spanChar' breaks its ByteString argument at the first
-- occurrence of a Char other than its argument. It is more efficient
-- than 'span (==)'
--
-- > span (=='c') "abcd" == spanByte 'c' "abcd"
--
spanChar :: Char -> ByteString -> (ByteString, ByteString)
spanChar = L.spanByte . c2w
{-# INLINE spanChar #-}
-}
--
-- TODO, more rules for breakChar*
--
-- | /O(n)/ Break a 'ByteString' into pieces separated by the byte
-- argument, consuming the delimiter. I.e.
--
-- > split '\n' "a\nb\nd\ne" == ["a","b","d","e"]
-- > split 'a' "aXaXaXa" == ["","X","X","X"]
-- > split 'x' "x" == ["",""]
-- > split undefined "" == [] -- and not [""]
--
-- and
--
-- > intercalate [c] . split c == id
-- > split == splitWith . (==)
--
-- As for all splitting functions in this library, this function does
-- not copy the substrings, it just constructs new 'ByteString's that
-- are slices of the original.
--
split :: Char -> ByteString -> [ByteString]
split = L.split . c2w
{-# INLINE split #-}
-- | /O(n)/ Splits a 'ByteString' into components delimited by
-- separators, where the predicate returns True for a separator element.
-- The resulting components do not contain the separators. Two adjacent
-- separators result in an empty component in the output. eg.
--
-- > splitWith (=='a') "aabbaca" == ["","","bb","c",""]
-- > splitWith undefined "" == [] -- and not [""]
--
splitWith :: (Char -> Bool) -> ByteString -> [ByteString]
splitWith f = L.splitWith (f . w2c)
{-# INLINE splitWith #-}
-- | The 'groupBy' function is the non-overloaded version of 'group'.
groupBy :: (Char -> Char -> Bool) -> ByteString -> [ByteString]
groupBy k = L.groupBy (\a b -> k (w2c a) (w2c b))
-- | /O(1)/ 'ByteString' index (subscript) operator, starting from 0.
index :: ByteString -> Int64 -> Char
index = (w2c .) . L.index
{-# INLINE index #-}
-- | /O(1)/ 'ByteString' index, starting from 0, that returns 'Just' if:
--
-- > 0 <= n < length bs
--
-- @since 0.11.0.0
indexMaybe :: ByteString -> Int64 -> Maybe Char
indexMaybe = (fmap w2c .) . L.indexMaybe
{-# INLINE indexMaybe #-}
-- | /O(1)/ 'ByteString' index, starting from 0, that returns 'Just' if:
--
-- > 0 <= n < length bs
--
-- @since 0.11.0.0
(!?) :: ByteString -> Int64 -> Maybe Char
(!?) = indexMaybe
{-# INLINE (!?) #-}
-- | /O(n)/ The 'elemIndex' function returns the index of the first
-- element in the given 'ByteString' which is equal (by memchr) to the
-- query element, or 'Nothing' if there is no such element.
elemIndex :: Char -> ByteString -> Maybe Int64
elemIndex = L.elemIndex . c2w
{-# INLINE elemIndex #-}
-- | /O(n)/ The 'elemIndexEnd' function returns the last index of the
-- element in the given 'ByteString' which is equal to the query
-- element, or 'Nothing' if there is no such element. The following
-- holds:
--
-- > elemIndexEnd c xs = case elemIndex c (reverse xs) of
-- > Nothing -> Nothing
-- > Just i -> Just (length xs - 1 - i)
--
-- @since 0.11.1.0
elemIndexEnd :: Char -> ByteString -> Maybe Int64
elemIndexEnd = L.elemIndexEnd . c2w
{-# INLINE elemIndexEnd #-}
-- | /O(n)/ The 'elemIndices' function extends 'elemIndex', by returning
-- the indices of all elements equal to the query element, in ascending order.
elemIndices :: Char -> ByteString -> [Int64]
elemIndices = L.elemIndices . c2w
{-# INLINE elemIndices #-}
-- | The 'findIndex' function takes a predicate and a 'ByteString' and
-- returns the index of the first element in the ByteString satisfying the predicate.
findIndex :: (Char -> Bool) -> ByteString -> Maybe Int64
findIndex f = L.findIndex (f . w2c)
{-# INLINE findIndex #-}
-- | The 'findIndexEnd' function takes a predicate and a 'ByteString' and
-- returns the index of the last element in the ByteString
-- satisfying the predicate.
--
-- @since 0.11.1.0
findIndexEnd :: (Char -> Bool) -> ByteString -> Maybe Int64
findIndexEnd f = L.findIndexEnd (f . w2c)
{-# INLINE findIndexEnd #-}
-- | The 'findIndices' function extends 'findIndex', by returning the
-- indices of all elements satisfying the predicate, in ascending order.
findIndices :: (Char -> Bool) -> ByteString -> [Int64]
findIndices f = L.findIndices (f . w2c)
{-# INLINE findIndices #-}
-- | count returns the number of times its argument appears in the ByteString
--
-- > count == length . elemIndices
-- > count '\n' == length . lines
--
-- But more efficiently than using length on the intermediate list.
count :: Char -> ByteString -> Int64
count c = L.count (c2w c)
-- | /O(n)/ 'elem' is the 'ByteString' membership predicate. This
-- implementation uses @memchr(3)@.
elem :: Char -> ByteString -> Bool
elem c = L.elem (c2w c)
{-# INLINE elem #-}
-- | /O(n)/ 'notElem' is the inverse of 'elem'
notElem :: Char -> ByteString -> Bool
notElem c = L.notElem (c2w c)
{-# INLINE notElem #-}
-- | /O(n)/ 'filter', applied to a predicate and a ByteString,
-- returns a ByteString containing those characters that satisfy the
-- predicate.
filter :: (Char -> Bool) -> ByteString -> ByteString
filter f = L.filter (f . w2c)
{-# INLINE filter #-}
-- | @since 0.10.12.0
partition :: (Char -> Bool) -> ByteString -> (ByteString, ByteString)
partition f = L.partition (f . w2c)
{-# INLINE partition #-}
{-
-- | /O(n)/ and /O(n\/c) space/ A first order equivalent of /filter .
-- (==)/, for the common case of filtering a single Char. It is more
-- efficient to use /filterChar/ in this case.
--
-- > filterChar == filter . (==)
--
-- filterChar is around 10x faster, and uses much less space, than its
-- filter equivalent
--
filterChar :: Char -> ByteString -> ByteString
filterChar c ps = replicate (count c ps) c
{-# INLINE filterChar #-}
{-# RULES
"ByteString specialise filter (== x)" forall x.
filter ((==) x) = filterChar x
#-}
{-# RULES
"ByteString specialise filter (== x)" forall x.
filter (== x) = filterChar x
#-}
-}
-- | /O(n)/ The 'find' function takes a predicate and a ByteString,
-- and returns the first element in matching the predicate, or 'Nothing'
-- if there is no such element.
find :: (Char -> Bool) -> ByteString -> Maybe Char
find f ps = w2c `fmap` L.find (f . w2c) ps
{-# INLINE find #-}
{-
-- | /O(n)/ A first order equivalent of /filter . (==)/, for the common
-- case of filtering a single Char. It is more efficient to use
-- filterChar in this case.
--
-- > filterChar == filter . (==)
--
-- filterChar is around 10x faster, and uses much less space, than its
-- filter equivalent
--
filterChar :: Char -> ByteString -> ByteString
filterChar c = L.filterByte (c2w c)
{-# INLINE filterChar #-}
-- | /O(n)/ A first order equivalent of /filter . (\/=)/, for the common
-- case of filtering a single Char out of a list. It is more efficient
-- to use /filterNotChar/ in this case.
--
-- > filterNotChar == filter . (/=)
--
-- filterNotChar is around 3x faster, and uses much less space, than its
-- filter equivalent
--
filterNotChar :: Char -> ByteString -> ByteString
filterNotChar c = L.filterNotByte (c2w c)
{-# INLINE filterNotChar #-}
-}
-- | /O(n)/ 'zip' takes two ByteStrings and returns a list of
-- corresponding pairs of Chars. If one input ByteString is short,
-- excess elements of the longer ByteString are discarded. This is
-- equivalent to a pair of 'unpack' operations, and so space
-- usage may be large for multi-megabyte ByteStrings
zip :: ByteString -> ByteString -> [(Char,Char)]
zip ps qs
| L.null ps || L.null qs = []
| otherwise = (head ps, head qs) : zip (L.tail ps) (L.tail qs)
-- | 'zipWith' generalises 'zip' by zipping with the function given as
-- the first argument, instead of a tupling function. For example,
-- @'zipWith' (+)@ is applied to two ByteStrings to produce the list
-- of corresponding sums.
zipWith :: (Char -> Char -> a) -> ByteString -> ByteString -> [a]
zipWith f = L.zipWith ((. w2c) . f . w2c)
-- | A specialised version of `zipWith` for the common case of a
-- simultaneous map over two ByteStrings, to build a 3rd.
--
-- @since 0.11.1.0
packZipWith :: (Char -> Char -> Char) -> ByteString -> ByteString -> ByteString
packZipWith f = L.packZipWith f'
where
f' c1 c2 = c2w $ f (w2c c1) (w2c c2)
{-# INLINE packZipWith #-}
-- | /O(n)/ 'unzip' transforms a list of pairs of chars into a pair of
-- ByteStrings. Note that this performs two 'pack' operations.
--
-- @since 0.11.1.0
unzip :: [(Char, Char)] -> (ByteString, ByteString)
unzip ls = (pack (fmap fst ls), pack (fmap snd ls))
{-# INLINE unzip #-}
-- | 'lines' lazily splits a ByteString into a list of ByteStrings at
-- newline Chars (@'\\n'@). The resulting strings do not contain newlines.
-- The first chunk of the result is only strict in the first chunk of the
-- input.
--
-- Note that it __does not__ regard CR (@'\\r'@) as a newline character.
--
lines :: ByteString -> [ByteString]
lines Empty = []
lines (Chunk c0 cs0) = unNE $! go c0 cs0
where
-- Natural NonEmpty -> List
unNE :: NonEmpty a -> [a]
unNE (a :| b) = a : b
-- Strict in the first argument, lazy in the second.
consNE :: ByteString -> NonEmpty ByteString -> NonEmpty ByteString
consNE !a b = a :| (unNE $! b)
-- Note invariant: The initial chunk is non-empty on input, and we
-- need to be sure to maintain this in internal recursive calls.
go :: S.ByteString -> ByteString -> NonEmpty ByteString
go c cs = case B.elemIndex (c2w '\n') c of
Just n
| n1 <- n + 1
, n1 < B.length c -> consNE c' $ go (B.unsafeDrop n1 c) cs
-- 'c' was a multi-line chunk
| otherwise -> c' :| lines cs
-- 'c' was a single-line chunk
where
!c' = chunk (B.unsafeTake n c) Empty
-- Initial chunk with no new line becomes first chunk of
-- first line of result, with the rest of the result lazy!
-- In particular, we don't strictly pattern match on 'cs'.
--
-- We can form `Chunk c ...` because the invariant is maintained
-- here and also by using `chunk` in the defintion of `c'` above.
Nothing -> let ~(l:|ls) = lazyRest cs
in Chunk c l :| ls
where
lazyRest :: ByteString -> NonEmpty ByteString
lazyRest (Chunk c' cs') = go c' cs'
lazyRest Empty = Empty :| []
-- | 'unlines' joins lines, appending a terminating newline after each.
--
-- Equivalent to
-- @'concat' . Data.List.concatMap (\\x -> [x, 'singleton' \'\\n'])@.
unlines :: [ByteString] -> ByteString
unlines = List.foldr (\x t -> x `append` cons '\n' t) Empty
-- | 'words' breaks a ByteString up into a list of words, which
-- were delimited by Chars representing white space. And
--
-- > tokens isSpace = words
--
words :: ByteString -> [ByteString]
words = List.filter (not . L.null) . L.splitWith isSpaceWord8
{-# INLINE words #-}
-- | The 'unwords' function is analogous to the 'unlines' function, on words.
unwords :: [ByteString] -> ByteString
unwords = intercalate (singleton ' ')
{-# INLINE unwords #-}
-- | Write a ByteString to a handle, appending a newline byte.
--
-- The chunks will be
-- written one at a time, followed by a newline.
-- Other threads might write to the 'Handle' in between,
-- and hence 'hPutStrLn' alone is not suitable for concurrent writes.
--
hPutStrLn :: Handle -> ByteString -> IO ()
hPutStrLn h ps = hPut h ps >> hPut h (L.singleton 0x0a)
-- | Write a ByteString to 'stdout', appending a newline byte.
--
-- The chunks will be
-- written one at a time, followed by a newline.
-- Other threads might write to the 'stdout' in between,
-- and hence 'putStrLn' alone is not suitable for concurrent writes.
--
putStrLn :: ByteString -> IO ()
putStrLn = hPutStrLn stdout