forked from rebeccaknowlton/drosophila-longevity
-
Notifications
You must be signed in to change notification settings - Fork 1
/
week9_work.Rmd
321 lines (271 loc) · 10.5 KB
/
week9_work.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
---
title: "week9_work"
author: "Eric Weine"
date: "4/28/2022"
output:
html_document:
df_print: paged
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r, include=FALSE}
set.seed(1)
library(ggplot2)
'%>%' <- dplyr::'%>%'
```
# Pallares Classification
```{r, include=FALSE}
summary_table <- read.delim('data/SummaryTable_allsites_12Nov20.txt')
# replace 0 p-values with small numbers
summary_table <- summary_table %>%
dplyr::select(c(site, pval_CTRL, pval_HS, coef_CTRL, coef_HS, sig_cat)) %>%
dplyr::mutate(
pval_CTRL = pmax(.00000000001, pval_CTRL),
pval_HS = pmax(.00000000001, pval_HS)
)
# construct std error estimates from coefficients and p-values
summary_table <- summary_table %>%
dplyr::mutate(
std_error_ctrl = abs(coef_CTRL) / qnorm((2 - pval_CTRL) / 2),
std_error_hs = abs(coef_HS) / qnorm((2 - pval_HS) / 2)
)
sites_df <- data.frame(stringr::str_split_fixed(summary_table$site, ":", 2))
colnames(sites_df) <- c("chromosome", "site_id")
sites_df <- sites_df %>%
dplyr::mutate(site_id = as.numeric(site_id))
# split into blocks of a certain length
split_into_LD_blocks <- function(df, block_length) {
block_range <- seq(from = min(df$site_id), to = max(df$site_id), by = block_length)
df %>%
dplyr::mutate(block_id = plyr::laply(site_id, function(x) sum(x > block_range)))
}
# group by chromosome and then split into blocks
sites_df <- sites_df %>%
dplyr::group_by(chromosome) %>%
dplyr::group_modify(~ split_into_LD_blocks(.x, 1e4))
# Now, want to sample one SNP from each group
sites_sample_df <- sites_df %>%
dplyr::ungroup() %>%
dplyr::sample_frac() %>% #randomly shuffle df
dplyr::distinct(chromosome, block_id, .keep_all = TRUE) %>%
dplyr::select(chromosome, site_id)
# Reconstruct site names
selected_sites <- purrr::pmap_chr(
list(sites_sample_df$chromosome, sites_sample_df$site_id),
function(x, y) glue::glue("{x}:{y}")
)
summary_table_samp <- summary_table %>%
dplyr::filter(site %in% selected_sites)
summary_table_signif <- summary_table %>%
dplyr::filter(sig_cat != 'NS')
# generate a test df
sites_test_df <- sites_df %>%
dplyr::ungroup() %>%
dplyr::sample_frac() %>% #randomly shuffle df
dplyr::distinct(chromosome, block_id, .keep_all = TRUE) %>%
dplyr::select(chromosome, site_id)
# Reconstruct site names
selected_sites_test <- purrr::pmap_chr(
list(sites_test_df$chromosome, sites_test_df$site_id),
function(x, y) glue::glue("{x}:{y}")
)
summary_table_test <- summary_table %>%
dplyr::filter(site %in% selected_sites_test)
reg_fx_samp_mat <- t(matrix(
data = c(summary_table_samp$coef_CTRL, summary_table_samp$coef_HS),
nrow = 2,
byrow = TRUE
))
colnames(reg_fx_samp_mat) <- c("ctrl", "hs")
reg_fx_mat_test <- t(matrix(
data = c(summary_table_test$coef_CTRL, summary_table_test$coef_HS),
nrow = 2,
byrow = TRUE
))
colnames(reg_fx_mat_test) <- c("ctrl", "hs")
reg_fx_mat_signif <- t(matrix(
data = c(summary_table_signif$coef_CTRL, summary_table_signif$coef_HS),
nrow = 2,
byrow = TRUE
))
colnames(reg_fx_mat_signif) <- c("ctrl", "hs")
reg_se_samp_mat <- t(matrix(
data = c(summary_table_samp$std_error_ctrl, summary_table_samp$std_error_hs),
nrow = 2,
byrow = TRUE
))
colnames(reg_se_samp_mat) <- c("ctrl", "hs")
reg_se_mat_test <- t(matrix(
data = c(summary_table_test$std_error_ctrl, summary_table_test$std_error_hs),
nrow = 2,
byrow = TRUE
))
colnames(reg_se_mat_test) <- c("ctrl", "hs")
reg_se_mat_signif <- t(matrix(
data = c(summary_table_signif$std_error_ctrl, summary_table_signif$std_error_hs),
nrow = 2,
byrow = TRUE
))
colnames(reg_se_mat_signif) <- c("ctrl", "hs")
mash_samp_data <- mashr::mash_set_data(reg_fx_samp_mat, reg_se_samp_mat)
mash_test_data <- mashr::mash_set_data(reg_fx_mat_test, reg_se_mat_test)
mash_signif_data <- mashr::mash_set_data(reg_fx_mat_signif, reg_se_mat_signif)
mash_fit <- readr::read_rds("rds_data/12k_fitted_g_loose.rds")
mash_posterior_samp <- mashr::mash(
data = mash_samp_data,
g = mash_fit,
fixg = TRUE
)
mash_posterior_signif <- mashr::mash(
data = mash_signif_data,
g = mash_fit,
fixg = TRUE
)
# if null weight is > .05, classify as null
mash_posterior_samp$posterior_weights[,"null"] <- ifelse(
mash_posterior_samp$posterior_weights[,"null"] > .05,
1,
mash_posterior_samp$posterior_weights[,"null"]
)
cov_mat_names_samp <- colnames(mash_posterior_samp$posterior_weights)
map_mash_samp <- cov_mat_names_samp[max.col(mash_posterior_samp$posterior_weights)]
map_mash_samp_df <- data.frame(
site = summary_table_samp$site,
cov_map = map_mash_samp
)
summary_table_samp <- summary_table_samp %>%
dplyr::inner_join(map_mash_samp_df, by=c("site"))
# if null weight is > .05, classify as null
mash_posterior_signif$posterior_weights[,"null"] <- ifelse(
mash_posterior_signif$posterior_weights[,"null"] > .05,
1,
mash_posterior_signif$posterior_weights[,"null"]
)
cov_mat_names_sig <- colnames(mash_posterior_signif$posterior_weights)
map_mash_sig <- cov_mat_names_sig[
max.col(mash_posterior_signif$posterior_weights)
]
map_mash_sig_df <- data.frame(
site = summary_table_signif$site,
cov_map = map_mash_sig
)
summary_table_sig <- summary_table_signif %>%
dplyr::inner_join(map_mash_sig_df, by=c("site"))
```
We will use the sparse mash model to classify signals this week. Below is a comparison of the classifications for a sample of 12030 SNPs (1 from each LD block). The rows are Pallares classifications and the columns are MASH classifications. This time, if the probability of a null signal exceeds .05, we classify that signal as null.
```{r, include = FALSE}
summary_table_samp <- summary_table_samp %>%
dplyr::mutate(
mixt_comp = dplyr::case_when(
cov_map %in% c("equal_corr_1.11", "equal_corr_1.12") ~ "equal_corr_1",
cov_map == "hs_amp_1.5_corr_1.11" ~ "hs_amp_1.5_corr_1",
cov_map == "hs_amp_3_corr_-1.14" ~ "hs_amp_3_corr_-1",
cov_map == "null" ~ "null"
)
)
tab <- table(summary_table_samp$sig_cat, summary_table_samp$mixt_comp)
mat <- as.matrix(tab)
control_spec_mat <- matrix(data = c(0, 0, 0, 0), nrow = 1, ncol = 4)
rownames(control_spec_mat) <- c("C")
colnames(control_spec_mat) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "null")
ctrl_spec_mat <- matrix(data = c(0, 0, 0, 0), nrow = 4)
rownames(ctrl_spec_mat) <- c("NS", "shared", "HS", "C")
colnames(ctrl_spec_mat) <- c("ctrl_spec")
hs_spec_mat <- matrix(data = c(0, 0, 0, 0), nrow = 4)
rownames(hs_spec_mat) <- c("NS", "shared", "HS", "C")
colnames(hs_spec_mat) <- c("hs_spec")
mat <- rbind(mat, control_spec_mat)
mat <- cbind(mat, ctrl_spec_mat)
mat <- cbind(mat, hs_spec_mat)
mat <- mat[c("NS", "shared", "HS", "C"),,drop=FALSE]
rownames(mat) <- c("null", "shared", "hs_spec", "ctrl_spec")
tab <- as.table(mat)
```
```{r, echo=FALSE}
knitr::kable(tab)
```
Below is a plot of the estimated regression coefficients of Pallares colored by mash classification. Note that the columns in the table above that sum to zero are not shown in the plot legend. I felt that this made the plot easier to understand but we can certainly change this. The x-axis and regression line are shown in the plot.
```{r, echo=FALSE}
plot_colors <- c("orange", "green", "red", "blue")
names(plot_colors) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "null")
summary_table_samp <- summary_table_samp %>%
dplyr::mutate(
corr = dplyr::case_when(
mixt_comp %in% c("equal_corr_1", "hs_amp_1.5_corr_1") ~ "non_null_corr_1",
mixt_comp == "hs_amp_3_corr_-1" ~ "non_null_corr_-1",
mixt_comp == "null" ~ "null"
),
amplification = dplyr::case_when(
mixt_comp == "equal_corr_1" ~ 1.0,
mixt_comp == "hs_amp_1.5_corr_1" ~ 1.5,
mixt_comp == "hs_amp_3_corr_-1" ~ 3.0,
mixt_comp == "null" ~ 1.0
),
)
reg_line <- lm(coef_CTRL ~ coef_HS, data = summary_table_samp)
plot_colors <- c("orange", "green", "red", "blue")
names(plot_colors) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "null")
ggplot(data = summary_table_samp, aes(x = coef_HS, y = coef_CTRL, color = mixt_comp)) +
geom_point(size = 1) +
scale_color_manual(name = "mixt_comp", values = plot_colors) +
geom_abline(slope = 0, intercept = 0, linetype = "dashed") +
geom_abline(
intercept = coef(summary(reg_line))['(Intercept)', 'Estimate'],
slope = coef(summary(reg_line))['coef_HS', 'Estimate'],
)
```
It is also instructive to look only at the SNPs that Pallares classifies as significant.
```{r, include=FALSE}
summary_table_sig <- summary_table_sig %>%
dplyr::mutate(
mixt_comp = dplyr::case_when(
cov_map %in% c("equal_corr_1.11", "equal_corr_1.12") ~ "equal_corr_1",
cov_map %in% c("hs_amp_1.5_corr_1.11", "hs_amp_1.5_corr_1.15") ~ "hs_amp_1.5_corr_1",
cov_map == "hs_amp_3_corr_-1.14" ~ "hs_amp_3_corr_-1",
cov_map == "ctrl_spec.14" ~ "ctrl_spec",
cov_map == "null" ~ "null"
)
)
tab <- table(summary_table_sig$sig_cat, summary_table_sig$mixt_comp)
mat <- as.matrix(tab)
extra_mat <- matrix(data = c(0, 0, 0, 0, 0, 0), nrow = 3, ncol = 2)
rownames(extra_mat) <- c("CTRL", "HS", "shared")
colnames(extra_mat) <- c("null", "hs_spec")
mat <- cbind(mat, extra_mat)
rownames(mat) <- c("ctrl_spec", "hs_spec", "shared")
mat <- mat[,c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "null", "ctrl_spec", "hs_spec"),drop=FALSE]
mat <- mat[c("shared", "hs_spec", "ctrl_spec"),,drop=FALSE]
tab <- as.table(mat)
```
```{r, echo=FALSE}
knitr::kable(tab)
```
Again, below is a plot of the regression coefficients colored by mash classification.
```{r, echo=FALSE}
summary_table_sig <- summary_table_sig %>%
dplyr::mutate(
corr = dplyr::case_when(
mixt_comp %in% c("equal_corr_1", "hs_amp_1.5_corr_1") ~ "non_null_corr_1",
mixt_comp == "hs_amp_3_corr_-1" ~ "non_null_corr_-1",
mixt_comp == "ctrl_spec" ~ "non_null_ctrl_spec"
),
amplification = dplyr::case_when(
mixt_comp == "equal_corr_1" ~ 1.0,
mixt_comp == "hs_amp_1.5_corr_1" ~ 1.5,
mixt_comp == "hs_amp_3_corr_-1" ~ 3.0,
mixt_comp == "ctrl_spec" ~ 1.0
),
)
reg_line <- lm(coef_CTRL ~ coef_HS, data = summary_table_samp)
plot_colors <- c("orange", "blue", "red", "green")
names(plot_colors) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "ctrl_spec")
ggplot(data = summary_table_sig, aes(x = coef_HS, y = coef_CTRL, color = mixt_comp)) +
geom_point(size = .75) +
scale_color_manual(name = "mixt_comp", values = plot_colors) +
geom_abline(slope = 0, intercept = 0, linetype = "dashed") +
geom_abline(
intercept = coef(summary(reg_line))['(Intercept)', 'Estimate'],
slope = coef(summary(reg_line))['coef_HS', 'Estimate'],
)
```