-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathmodel.py
190 lines (154 loc) · 6.61 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
'''
Implementation of Compositional Pattern Producing Networks in Tensorflow
https://en.wikipedia.org/wiki/Compositional_pattern-producing_network
@hardmaru, 2016
'''
import numpy as np
import tensorflow as tf
from ops import *
class CPPN():
def __init__(self, batch_size=1, z_dim = 32, c_dim = 1, scale = 8.0, net_size = 32):
"""
Args:
z_dim: how many dimensions of the latent space vector (R^z_dim)
c_dim: 1 for mono, 3 for rgb. dimension for output space. you can modify code to do HSV rather than RGB.
net_size: number of nodes for each fully connected layer of cppn
scale: the bigger, the more zoomed out the picture becomes
"""
self.batch_size = batch_size
self.net_size = net_size
x_dim = 256
y_dim = 256
self.x_dim = x_dim
self.y_dim = y_dim
self.scale = scale
self.c_dim = c_dim
self.z_dim = z_dim
# tf Graph batch of image (batch_size, height, width, depth)
self.batch = tf.placeholder(tf.float32, [batch_size, x_dim, y_dim, c_dim])
n_points = x_dim * y_dim
self.n_points = n_points
self.x_vec, self.y_vec, self.r_vec = self._coordinates(x_dim, y_dim, scale)
# latent vector
self.z = tf.placeholder(tf.float32, [self.batch_size, self.z_dim])
# inputs to cppn, like coordinates and radius from centre
self.x = tf.placeholder(tf.float32, [self.batch_size, None, 1])
self.y = tf.placeholder(tf.float32, [self.batch_size, None, 1])
self.r = tf.placeholder(tf.float32, [self.batch_size, None, 1])
# builds the generator network
self.G = self.generator(x_dim = self.x_dim, y_dim = self.y_dim)
self.init()
def init(self):
# Initializing the tensor flow variables
init = tf.global_variables_initializer()
# Launch the session
self.sess = tf.Session()
self.sess.run(init)
def reinit(self):
init = tf.initialize_variables(tf.trainable_variables())
self.sess.run(init)
def _coordinates(self, x_dim = 32, y_dim = 32, scale = 1.0):
'''
calculates and returns a vector of x and y coordintes, and corresponding radius from the centre of image.
'''
n_points = x_dim * y_dim
x_range = scale*(np.arange(x_dim)-(x_dim-1)/2.0)/(x_dim-1)/0.5
y_range = scale*(np.arange(y_dim)-(y_dim-1)/2.0)/(y_dim-1)/0.5
x_mat = np.matmul(np.ones((y_dim, 1)), x_range.reshape((1, x_dim)))
y_mat = np.matmul(y_range.reshape((y_dim, 1)), np.ones((1, x_dim)))
r_mat = np.sqrt(x_mat*x_mat + y_mat*y_mat)
x_mat = np.tile(x_mat.flatten(), self.batch_size).reshape(self.batch_size, n_points, 1)
y_mat = np.tile(y_mat.flatten(), self.batch_size).reshape(self.batch_size, n_points, 1)
r_mat = np.tile(r_mat.flatten(), self.batch_size).reshape(self.batch_size, n_points, 1)
return x_mat, y_mat, r_mat
def generator(self, x_dim, y_dim, reuse = False):
if reuse:
tf.get_variable_scope().reuse_variables()
net_size = self.net_size
n_points = x_dim * y_dim
# note that latent vector z is scaled to self.scale factor.
z_scaled = tf.reshape(self.z, [self.batch_size, 1, self.z_dim]) * \
tf.ones([n_points, 1], dtype=tf.float32) * self.scale
z_unroll = tf.reshape(z_scaled, [self.batch_size*n_points, self.z_dim])
x_unroll = tf.reshape(self.x, [self.batch_size*n_points, 1])
y_unroll = tf.reshape(self.y, [self.batch_size*n_points, 1])
r_unroll = tf.reshape(self.r, [self.batch_size*n_points, 1])
U = fully_connected(z_unroll, net_size, 'g_0_z') + \
fully_connected(x_unroll, net_size, 'g_0_x', with_bias = False) + \
fully_connected(y_unroll, net_size, 'g_0_y', with_bias = False) + \
fully_connected(r_unroll, net_size, 'g_0_r', with_bias = False)
'''
Below are a bunch of examples of different CPPN configurations.
Feel free to comment out and experiment!
'''
###
### Example: 3 layers of tanh() layers, with net_size = 32 activations/layer
###
#'''
H = tf.nn.tanh(U)
for i in range(3):
H = tf.nn.tanh(fully_connected(H, net_size, 'g_tanh_'+str(i)))
output = tf.sigmoid(fully_connected(H, self.c_dim, 'g_final'))
#'''
###
### Similar to example above, but instead the output is
### a weird function rather than just the sigmoid
'''
H = tf.nn.tanh(U)
for i in range(3):
H = tf.nn.tanh(fully_connected(H, net_size, 'g_tanh_'+str(i)))
output = tf.sqrt(1.0-tf.abs(tf.tanh(fully_connected(H, self.c_dim, 'g_final'))))
'''
###
### Example: mixing softplus and tanh layers, with net_size = 32 activations/layer
###
'''
H = tf.nn.tanh(U)
H = tf.nn.softplus(fully_connected(H, net_size, 'g_softplus_1'))
H = tf.nn.tanh(fully_connected(H, net_size, 'g_tanh_2'))
H = tf.nn.softplus(fully_connected(H, net_size, 'g_softplus_2'))
H = tf.nn.tanh(fully_connected(H, net_size, 'g_tanh_2'))
H = tf.nn.softplus(fully_connected(H, net_size, 'g_softplus_2'))
output = tf.sigmoid(fully_connected(H, self.c_dim, 'g_final'))
'''
###
### Example: mixing sinusoids, tanh and multiple softplus layers
###
'''
H = tf.nn.tanh(U)
H = tf.nn.softplus(fully_connected(H, net_size, 'g_softplus_1'))
H = tf.nn.tanh(fully_connected(H, net_size, 'g_tanh_2'))
H = tf.nn.softplus(fully_connected(H, net_size, 'g_softplus_2'))
output = 0.5 * tf.sin(fully_connected(H, self.c_dim, 'g_final')) + 0.5
'''
###
### Example: residual network of 4 tanh() layers
###
'''
H = tf.nn.tanh(U)
for i in range(3):
H = H+tf.nn.tanh(fully_connected(H, net_size, g_tanh_'+str(i)))
output = tf.sigmoid(fully_connected(H, self.c_dim, 'g_final'))
'''
'''
The final hidden later is pass thru a fully connected sigmoid later, so outputs -> (0, 1)
Also, the output has a dimention of c_dim, so can be monotone or RGB
'''
result = tf.reshape(output, [self.batch_size, y_dim, x_dim, self.c_dim])
return result
def generate(self, z=None, x_dim = 26, y_dim = 26, scale = 8.0):
""" Generate data by sampling from latent space.
If z is not None, data for this point in latent space is
generated. Otherwise, z is drawn from prior in latent
space.
"""
if z is None:
z = np.random.uniform(-1.0, 1.0, size=(self.batch_size, self.z_dim)).astype(np.float32)
# Note: This maps to mean of distribution, we could alternatively
# sample from Gaussian distribution
G = self.generator(x_dim = x_dim, y_dim = y_dim, reuse = True)
x_vec, y_vec, r_vec = self._coordinates(x_dim, y_dim, scale = scale)
image = self.sess.run(G, feed_dict={self.z: z, self.x: x_vec, self.y: y_vec, self.r: r_vec})
return image
def close(self):
self.sess.close()