-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdann.py
59 lines (48 loc) · 2.34 KB
/
dann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import torch
from torch import nn
from pytorch_lightning.utilities.cli import instantiate_class
from src.common_module import DomainClassifier
from src.system.source_only import DABase
class DANN(DABase):
def __init__(self, *args, hidden_dim: int = 1024, gamma: int = 10, **kwargs):
super(DANN, self).__init__(*args, **kwargs)
self.gamma = gamma
self.dc = DomainClassifier(kwargs['embed_dim'], hidden_dim)
self.criterion_dc = nn.CrossEntropyLoss()
def training_step(self, batch, batch_idx, optimizer_idx=None, child_compute_already=None):
(x_s, y_s), (x_t, y_t) = batch
if child_compute_already:
(embed_s, y_hat_s), (embed_t, y_hat_t) = child_compute_already
else:
embed_s, y_hat_s = self.get_feature(x_s)
embed_t, y_hat_t = self.get_feature(x_t)
loss_dc = self.compute_dc_loss(embed_s, embed_t, y_hat_s, y_hat_t)
loss_cls = self.criterion(y_hat_s, y_s)
loss = loss_cls+loss_dc
metric = self.train_metric(y_hat_s, y_s)
self.log_dict({f'train/loss': loss})
self.log_dict(metric)
return loss
def compute_dc_loss(self, embed_s, embed_t, y_hat_s, y_hat_t):
y_hat_dc = self.dc(torch.cat([embed_s, embed_t]), self.get_alpha())
y_dc = torch.cat([torch.zeros_like(y_hat_s[:, 0]), torch.ones_like(y_hat_t[:, 0])]).long()
loss_dc = self.criterion_dc(y_hat_dc, y_dc)
return loss_dc
def get_feature(self, x, domain=None):
feature = self.backbone(x)
embed = self.bottleneck(feature)
y_hat = self.fc(embed)
return embed, y_hat
def get_alpha(self):
return 2. / (1. + np.exp(-self.gamma * self.global_step / (self.num_step * self.max_epochs))) - 1
def configure_optimizers(self):
optimizer = instantiate_class([
{'params': self.backbone.parameters(), 'lr': self.optimizer_init_config['init_args']['lr'] * 0.1},
{'params': self.bottleneck.parameters()},
{'params': self.fc.parameters()},
{'params': self.dc.parameters()},
], self.optimizer_init_config)
lr_scheduler = {'scheduler': instantiate_class(optimizer, self.update_and_get_lr_scheduler_config()),
'interval': 'step'}
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler}