Skip to content

Latest commit

 

History

History

classification

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RepSurf for Classification

By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact)

Preparation

Environment

We tested under the environment:

  • python 3.7
  • pytorch 1.6.0
  • cuda 10.1
  • gcc 7.2.0
  • h5py

For anaconda user, initialize the conda environment repsurf-cls by:

sh init.sh

Experiments

ScanObjectNN (Data & Logs: Google Drive)

  • Performance:
Model Accuracy #Params Augment Code Log Checkpoint
MVTN 82.8 4.24M None link N/A link
PointMLP 85.7 12.6M Scale, Shift link link link
PointNet++ SSG 77.9 1.475M Rotate, Jitter link N/A N/A
Umbrella RepSurf (PointNet++ SSG) 84.87 1.483M None link google drive google drive (6MB)
Umbrella RepSurf (PointNet++ SSG, 2x) 86.05 6.806M None link google drive google drive (27MB)

  • To download dataset:
wget https://download.cs.stanford.edu/orion/scanobjectnn/h5_files.zip
unzip h5_files.zip
ln -s [PATH]/h5_files data/ScanObjectNN

Note: We conduct all experiments on the hardest variant of ScanObjectNN (PB_T50_RS).

  • To train Umbrella RepSurf on ScanObjectNN:
sh scripts/scanobjectnn/repsurf_ssg_umb.sh
  • To train Umbrella RepSurf (2x setting) on ScanObjectNN:
sh scripts/scanobjectnn/repsurf_ssg_umb_2x.sh

Acknowledgment

We use part of the library pointops from PointWeb.

License

RepSurf is under the Apache-2.0 license. Please contact the primary author Haoxi Ran ([email protected]) for commercial use.