forked from ARM-software/SCALE-Sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsram_traffic_os.py
430 lines (342 loc) · 14.4 KB
/
sram_traffic_os.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import math
from tqdm import tqdm
neg_inf = -1 * math.pow(2,32)
def sram_traffic(
dimension_rows=4,
dimension_cols=4,
ifmap_h=7, ifmap_w=7,
filt_h=3, filt_w=3,
num_channels=3,
strides=1, num_filt=8,
ofmap_base=2000000, filt_base=1000000, ifmap_base=0,
sram_read_trace_file="sram_read.csv",
sram_write_trace_file="sram_write.csv"
):
# Dimensions of output feature map channel
E_h = (ifmap_h - filt_h + strides) / strides
E_w = (ifmap_w - filt_w + strides) / strides
# Number of pixels in one convolution window
px_per_conv_window = filt_h * filt_w * num_channels
r2c = px_per_conv_window
# Total number of ofmap px across all channels
num_ofmap_px = E_h * E_w * num_filt
e2 = E_h * E_w
e2m = num_ofmap_px
# Variables to calculate folds in runtime
num_h_fold = math.ceil(e2/dimension_rows)
num_v_fold = math.ceil(num_filt/dimension_cols)
cycles = 0
read_cycles, util = gen_read_trace(
cycle = cycles,
dim_rows = dimension_rows,
dim_cols = dimension_cols,
num_v_fold = int(num_v_fold),
num_h_fold = int(num_h_fold),
ifmap_h = ifmap_h, ifmap_w= ifmap_w,
filt_h= filt_h, filt_w= filt_w,
num_channels= num_channels, stride=strides,
ofmap_h= int(E_h), ofmap_w= int(E_w), num_filters = num_filt,
filt_base= filt_base, ifmap_base= ifmap_base,
sram_read_trace_file= sram_read_trace_file
)
write_cycles = gen_write_trace(
cycle = cycles,
dim_rows = dimension_rows,
dim_cols = dimension_cols,
#num_v_fold = int(num_v_fold),
#num_h_fold = int(num_h_fold),
ofmap_h = int(E_h), ofmap_w = int(E_w),
num_filters = num_filt,
ofmap_base = ofmap_base,
conv_window_size = r2c,
sram_write_trace_file = sram_write_trace_file
)
cycles = max(read_cycles, write_cycles)
str_cycles = str(cycles)
return(str_cycles, util)
# End of sram_traffic()
def gen_read_trace(
cycle = 0,
dim_rows = 4,
dim_cols = 4,
num_v_fold = 1,
num_h_fold = 1,
ifmap_h = 7, ifmap_w = 7,
filt_h = 3, filt_w =3,
num_channels = 3, stride = 1,
ofmap_h =5, ofmap_w = 5, num_filters = 8,
filt_base = 1000000, ifmap_base = 0,
sram_read_trace_file = "sram_read.csv",
#sram_write_trace_file = "sram_write.csv"
):
# Layer specific variables
r2c = filt_h * filt_w * num_channels
rc = filt_w * num_channels
hc = ifmap_w * num_channels
e2 = ofmap_h * ofmap_w
#num_ofmap_px = e2 * num_filters
# Tracking variables
local_cycle = 0
#remaining_px = e2 # Need tracking for individual v folds
#remaining_px = []
remaining_filt = num_filters
ifmap_done = False
filt_done = False
row_base_addr = []
row_clk_offset = []
row_ofmap_idx = []
v_fold_row = []
col_base_addr = []
col_clk_offset = []
v_fold_col = []
h_fold_col = []
lane_done = []
v_fold_barrier = []
# Variables for utilization calculation
rows_used = 0
cols_used = 0
util = 0
# This initialization assumes num_rows << num_ofmap_px
# The assignment logic needs to be modified if that is not the case
for r in range(dim_rows):
base_row_id = math.floor(r / ofmap_w) * stride
base_col_id = r % ofmap_w * stride
base_addr = base_row_id * hc + base_col_id * num_channels
if r < e2:
clk_offset = r * -1 # Clock offset takes care of the skew due to store and forward
else:
clk_offset = neg_inf # In case num_ofamp_px < dim_rows
row_base_addr.append(base_addr)
row_clk_offset.append(clk_offset)
row_ofmap_idx.append(r)
v_fold_row.append(0)
v_fold_barrier.append(False)
for c in range(dim_cols):
base_addr = c * r2c
# Anand: TODO
if c < remaining_filt:
clk_offset = c * -1
lane_done.append(False)
else:
clk_offset = neg_inf
lane_done.append(True)
col_base_addr.append(base_addr)
col_clk_offset.append(clk_offset)
v_fold_col.append(0)
h_fold_col.append(0)
# Open tracefile for writing
outfile = open(sram_read_trace_file, 'w')
#ofmap_out = open(sram_write_trace_file, 'w')
# Adding progress bar
tot = e2 * num_v_fold
#print("Total = " + str(tot))
pbar = tqdm(total=tot)
# Generate traces here
# The condition checks
# 1) if the all the input traces for last v fold is generated
# and 2) if all the filter traces have been generated
#while(remaining_px[num_v_fold-1] > 0) or (filt_done == False):
while(ifmap_done == False) or (filt_done == False):
ifmap_read = ""
filt_read = ""
rows_used = 0
cols_used = 0
# Generate address for ifmap
for r in range(dim_rows):
if(row_clk_offset[r] >= 0): # Take care of the skew
inc = row_clk_offset[r]
addr_row_offset = math.floor(inc / rc) * ifmap_w * num_channels
addr_col_offset = inc % rc
ifmap_addr = row_base_addr[r] + addr_row_offset + addr_col_offset
ifmap_read += str(int(ifmap_addr)) + ", "
rows_used += 1
else:
ifmap_read += ", "
row_clk_offset[r] += 1
if (row_clk_offset[r] > 0) and (row_clk_offset[r] % r2c == 0): #Completed MAC for one OFMAP px
row_ofmap_idx[r] += dim_rows
ofmap_idx = row_ofmap_idx[r]
# Update progress bar
pbar.update(1)
if ofmap_idx < e2:
row_clk_offset[r] = 0
base_row_id = math.floor(ofmap_idx / ofmap_w) * stride
base_col_id = ofmap_idx % ofmap_w * stride
base_addr = base_row_id * hc + base_col_id * num_channels
row_base_addr[r] = base_addr
else:
v_fold_row[r] += 1
#pbar.update(e2)
if(v_fold_row[r] < num_v_fold):
row_ofmap_idx[r] = r
base_row_id = math.floor(r / ofmap_w) * stride
base_col_id = r % ofmap_w * stride
base_addr = base_row_id * hc + base_col_id * num_channels
row_base_addr[r] = base_addr
# Stall this col from proceeding until all the rows reach the v_fold boundary
if (r != 0) and ((v_fold_row[r] > v_fold_row[r-1]) or (v_fold_barrier[r-1] == True)):
row_clk_offset[r] = neg_inf
v_fold_barrier[r] = True
else:
row_clk_offset[r] = 0
else:
row_clk_offset[r] = neg_inf
# Get out of the barrier one by one
# IMPORTANT: The barrier insertion and recovery is in separate loops to ensure that
# in a given clock cycle insertion for all rows strictly happen before the release.
# The flag ensures only one col is released per cycle
# Since indx 0 never enters the barrier, this should work fine
flag = False
for r in range(dim_rows):
if v_fold_barrier[r] and flag==False:
if (v_fold_row[r] == v_fold_row[r-1]) and (v_fold_barrier[r-1] == False):
v_fold_barrier[r] = False
flag = True
row_clk_offset[r] = row_clk_offset[r-1] -1
# Check if all input traces are done
ifmap_done = True
for r in range(dim_rows):
if row_clk_offset[r] > 0:
ifmap_done = False
# Generate address for filters
for c in range(dim_cols):
if(col_clk_offset[c] >= 0): # Take care of the skew
inc = col_clk_offset[c]
filt_addr = col_base_addr[c] + inc + filt_base
filt_read += str(filt_addr) + ", "
cols_used += 1
else:
filt_read += ", "
col_clk_offset[c] += 1
if(col_clk_offset[c] > 0) and (col_clk_offset[c] % r2c == 0):
# Get the v fold this col is working on and check the status of input trace generation
#rem_px = remaining_px[v_fold_col[c]]
#Tracking on the basis of h_folds
h_fold_col[c] += 1
# Anand: Check if all the input traces are generated for the given v fold
if (h_fold_col[c] < num_h_fold):
col_clk_offset[c] = 0
else:
v_fold_col[c] += 1
filt_id = v_fold_col[c] * dim_cols + c
# All filters might not be active in the last fold
# Adding the filter ID check to ensure only valid cols are active
if(v_fold_col[c] < num_v_fold) and (filt_id < num_filters):
col_clk_offset[c] = 0
h_fold_col[c] = 0
base = filt_id * r2c
col_base_addr[c] = base
else:
col_clk_offset[c] = neg_inf
lane_done[c] = True
# Check if all filter traces are generated
filt_done = True
for c in range(dim_cols):
if lane_done[c] == False:
filt_done = False
# Write to trace file
global_cycle = cycle + local_cycle
entry = str(global_cycle) + ", " + ifmap_read + filt_read + "\n"
outfile.write(entry)
this_util = (rows_used * cols_used) / (dim_rows * dim_cols)
util += this_util
# Update tracking variables
local_cycle += 1
pbar.close()
outfile.close()
#ofmap_out.close()
util_perc = (util / local_cycle) * 100
return (local_cycle + cycle), util_perc
# End of gen_read_trace()
def gen_write_trace(
cycle = 0,
dim_rows = 4,
dim_cols = 4,
#num_v_fold = 1,
#num_h_fold = 1,
ofmap_h = 5, ofmap_w = 5,
num_filters = 4,
ofmap_base = 2000000,
conv_window_size = 9, # The number of pixels in a convolution window
sram_write_trace_file = "sram_write.csv"
):
# Layer specific variables
r2c = conv_window_size
e2 = ofmap_h * ofmap_w
# Tracking variables
id_row = [] # List of OFMAP ID for each row
id_col = [] # List of filter ID for each col
base_addr_col =[] # Starting address of each output channel
remaining_px = e2
remaining_filt= num_filters
active_row = min(dim_rows, e2)
active_col = min(dim_cols, num_filters)
local_cycle = 0
sticky_flag = False # This flag is in place to fix the OFMAP cycle shaving bug
for r in range(active_row):
id_row.append(r)
for c in range(active_col):
id_col.append(c)
base_col = c
base_addr_col.append(base_col)
#Open the file for writing
outfile = open(sram_write_trace_file,"w")
#This is the cycle when all the OFMAP elements in the first col become available
local_cycle = r2c + active_col - 1
while (remaining_px > 0) or (remaining_filt > 0):
active_row = min(dim_rows, remaining_px)
for r in range(active_row):
local_px = id_row[r]
remaining_px -= 1
id_row[r] += active_row # Taking care of horizontal fold
ofmap_trace = ""
for c in range(active_col):
addr = ofmap_base + base_addr_col[c] + local_px * num_filters
ofmap_trace += str(addr) + ", "
# Write the generated traces to the file
entry = str(local_cycle + r) + ", " + ofmap_trace + "\n"
outfile.write(entry)
# Take care of the vertical fold
if remaining_px == 0:
remaining_filt -= active_col
# In case of vertical fold we have to track when the output of (0,0) is generated
# Shifting back local cycles to capture the last OFMAP generation in (0,0) for this fold
last_fold_cycle = local_cycle + active_row
local_cycle -= (active_row + active_col - 1)
sticky_flag = True
# There are more OFMAP channels to go
if remaining_filt > 0:
remaining_px = e2
last_active_col = active_col
active_col = min(remaining_filt, dim_cols)
# Reassign col base addresses
for c in range(active_col):
base_addr_col[c] += last_active_col
active_row = min(dim_rows, remaining_px)
# Reassign row base addresses
for r in range(active_row):
id_row[r] = r
local_cycle += r2c + active_col
if local_cycle < last_fold_cycle:
local_cycle = last_fold_cycle
else: # Restore the local cycle to return to the main function
local_cycle = last_fold_cycle
#local_cycle += (active_row + active_col)
#sticky_flag = False
else: # If this is not a vertical fold then it is business as usual
local_cycle += max(r2c, active_row)
outfile.close()
#if sticky_flag:
# local_cycle += (active_row + active_col)
# sticky_flag = False
return(local_cycle + cycle)
# End of gen_write_trace()
if __name__ == "__main__":
sram_traffic(
dimension_rows = 8,
dimension_cols = 4,
ifmap_h = 7, ifmap_w = 7,
filt_h = 2, filt_w = 2,
num_channels = 1, strides = 1,
num_filt = 7
)