-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathyolo_v2_class.hpp
660 lines (530 loc) · 24.5 KB
/
yolo_v2_class.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#pragma once
#ifdef YOLODLL_EXPORTS
#if defined(_MSC_VER)
#define YOLODLL_API __declspec(dllexport)
#else
#define YOLODLL_API __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define YOLODLL_API __declspec(dllimport)
#else
#define YOLODLL_API
#endif
#endif
struct bbox_t {
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
float prob; // confidence - probability that the object was found correctly
unsigned int obj_id; // class of object - from range [0, classes-1]
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
unsigned int frames_counter;// counter of frames on which the object was detected
};
struct image_t {
int h; // height
int w; // width
int c; // number of chanels (3 - for RGB)
float *data; // pointer to the image data
};
#define C_SHARP_MAX_OBJECTS 1000
struct bbox_t_container {
bbox_t candidates[C_SHARP_MAX_OBJECTS];
};
#ifdef __cplusplus
#include <memory>
#include <vector>
#include <deque>
#include <algorithm>
#ifdef OPENCV
#include <opencv2/opencv.hpp> // C++
#include "opencv2/highgui/highgui_c.h" // C
#include "opencv2/imgproc/imgproc_c.h" // C
#endif // OPENCV
extern "C" YOLODLL_API int init(const char *configurationFilename, const char *weightsFilename, int gpu);
extern "C" YOLODLL_API int detect_image(const char *filename, bbox_t_container &container);
extern "C" YOLODLL_API int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container);
extern "C" YOLODLL_API int dispose();
extern "C" YOLODLL_API int get_device_count();
extern "C" YOLODLL_API int get_device_name(int gpu, char* deviceName);
class Detector {
std::shared_ptr<void> detector_gpu_ptr;
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
const int cur_gpu_id;
public:
float nms = .4;
bool wait_stream;
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
YOLODLL_API ~Detector();
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
static YOLODLL_API image_t load_image(std::string image_filename);
static YOLODLL_API void free_image(image_t m);
YOLODLL_API int get_net_width() const;
YOLODLL_API int get_net_height() const;
YOLODLL_API int get_net_color_depth() const;
YOLODLL_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
int const frames_story = 10, int const max_dist = 150);
std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
{
if (img.data == NULL)
throw std::runtime_error("Image is empty");
auto detection_boxes = detect(img, thresh, use_mean);
float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
return detection_boxes;
}
#ifdef OPENCV
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
{
if(mat.data == NULL)
throw std::runtime_error("Image is empty");
auto image_ptr = mat_to_image_resize(mat);
return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
}
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
{
if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
cv::Size network_size = cv::Size(get_net_width(), get_net_height());
cv::Mat det_mat;
if (mat.size() != network_size)
cv::resize(mat, det_mat, network_size);
else
det_mat = mat; // only reference is copied
return mat_to_image(det_mat);
}
static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
{
cv::Mat img;
cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
*image_ptr = ipl_to_image(ipl_small.get());
return image_ptr;
}
private:
static image_t ipl_to_image(IplImage* src)
{
unsigned char *data = (unsigned char *)src->imageData;
int h = src->height;
int w = src->width;
int c = src->nChannels;
int step = src->widthStep;
image_t out = make_image_custom(w, h, c);
int count = 0;
for (int k = 0; k < c; ++k) {
for (int i = 0; i < h; ++i) {
int i_step = i*step;
for (int j = 0; j < w; ++j) {
out.data[count++] = data[i_step + j*c + k] / 255.;
}
}
}
return out;
}
static image_t make_empty_image(int w, int h, int c)
{
image_t out;
out.data = 0;
out.h = h;
out.w = w;
out.c = c;
return out;
}
static image_t make_image_custom(int w, int h, int c)
{
image_t out = make_empty_image(w, h, c);
out.data = (float *)calloc(h*w*c, sizeof(float));
return out;
}
#endif // OPENCV
};
#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/core/cuda.hpp>
class Tracker_optflow {
public:
const int gpu_count;
const int gpu_id;
const int flow_error;
Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
{
int const old_gpu_id = cv::cuda::getDevice();
cv::cuda::setDevice(gpu_id);
stream = cv::cuda::Stream();
sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level); // +- 3 pt
sync_PyrLKOpticalFlow_gpu->setNumIters(iterations); // 2000, def: 30
cv::cuda::setDevice(old_gpu_id);
}
// just to avoid extra allocations
cv::cuda::GpuMat src_mat_gpu;
cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
cv::cuda::GpuMat status_gpu, err_gpu;
cv::cuda::GpuMat src_grey_gpu; // used in both functions
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
cv::cuda::Stream stream;
std::vector<bbox_t> cur_bbox_vec;
std::vector<bool> good_bbox_vec_flags;
cv::Mat prev_pts_flow_cpu;
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
{
cur_bbox_vec = _cur_bbox_vec;
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
cv::Mat prev_pts, cur_pts_flow_cpu;
for (auto &i : cur_bbox_vec) {
float x_center = (i.x + i.w / 2.0F);
float y_center = (i.y + i.h / 2.0F);
prev_pts.push_back(cv::Point2f(x_center, y_center));
}
if (prev_pts.rows == 0)
prev_pts_flow_cpu = cv::Mat();
else
cv::transpose(prev_pts, prev_pts_flow_cpu);
if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
}
prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
}
void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
{
int const old_gpu_id = cv::cuda::getDevice();
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(gpu_id);
if (src_mat.channels() == 3) {
if (src_mat_gpu.cols == 0) {
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
}
update_cur_bbox_vec(_cur_bbox_vec);
//src_grey_gpu.upload(src_mat, stream); // use BGR
src_mat_gpu.upload(src_mat, stream);
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
}
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(old_gpu_id);
}
std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
{
if (sync_PyrLKOpticalFlow_gpu.empty()) {
std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
return cur_bbox_vec;
}
int const old_gpu_id = cv::cuda::getDevice();
if(old_gpu_id != gpu_id)
cv::cuda::setDevice(gpu_id);
if (dst_mat_gpu.cols == 0) {
dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
}
//dst_grey_gpu.upload(dst_mat, stream); // use BGR
dst_mat_gpu.upload(dst_mat, stream);
cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
stream.waitForCompletion();
src_grey_gpu = dst_grey_gpu.clone();
cv::cuda::setDevice(old_gpu_id);
return cur_bbox_vec;
}
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x
cv::Mat cur_pts_flow_cpu;
cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
dst_grey_gpu.copyTo(src_grey_gpu, stream);
cv::Mat err_cpu, status_cpu;
err_gpu.download(err_cpu, stream);
status_gpu.download(status_cpu, stream);
stream.waitForCompletion();
std::vector<bbox_t> result_bbox_vec;
if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size())
{
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
{
cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
float moved_x = cur_key_pt.x - prev_key_pt.x;
float moved_y = cur_key_pt.y - prev_key_pt.y;
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 &&
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
{
cur_bbox_vec[i].x += moved_x + 0.5;
cur_bbox_vec[i].y += moved_y + 0.5;
result_bbox_vec.push_back(cur_bbox_vec[i]);
}
else good_bbox_vec_flags[i] = false;
else good_bbox_vec_flags[i] = false;
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
}
}
cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(old_gpu_id);
return result_bbox_vec;
}
};
#elif defined(TRACK_OPTFLOW) && defined(OPENCV)
//#include <opencv2/optflow.hpp>
#include <opencv2/video/tracking.hpp>
class Tracker_optflow {
public:
const int flow_error;
Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
{
sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
sync_PyrLKOpticalFlow->setMaxLevel(max_level); // +- 3 pt
}
// just to avoid extra allocations
cv::Mat dst_grey;
cv::Mat prev_pts_flow, cur_pts_flow;
cv::Mat status, err;
cv::Mat src_grey; // used in both functions
cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow;
std::vector<bbox_t> cur_bbox_vec;
std::vector<bool> good_bbox_vec_flags;
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
{
cur_bbox_vec = _cur_bbox_vec;
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
cv::Mat prev_pts, cur_pts_flow;
for (auto &i : cur_bbox_vec) {
float x_center = (i.x + i.w / 2.0F);
float y_center = (i.y + i.h / 2.0F);
prev_pts.push_back(cv::Point2f(x_center, y_center));
}
if (prev_pts.rows == 0)
prev_pts_flow = cv::Mat();
else
cv::transpose(prev_pts, prev_pts_flow);
}
void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
{
if (new_src_mat.channels() == 3) {
update_cur_bbox_vec(_cur_bbox_vec);
cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
}
}
std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true)
{
if (sync_PyrLKOpticalFlow.empty()) {
std::cout << "sync_PyrLKOpticalFlow isn't initialized \n";
return cur_bbox_vec;
}
cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1);
if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
src_grey = dst_grey.clone();
return cur_bbox_vec;
}
if (prev_pts_flow.cols < 1) {
return cur_bbox_vec;
}
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err); // OpenCV 3.x
dst_grey.copyTo(src_grey);
std::vector<bbox_t> result_bbox_vec;
if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size())
{
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
{
cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i);
cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i);
float moved_x = cur_key_pt.x - prev_key_pt.x;
float moved_y = cur_key_pt.y - prev_key_pt.y;
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 &&
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
{
cur_bbox_vec[i].x += moved_x + 0.5;
cur_bbox_vec[i].y += moved_y + 0.5;
result_bbox_vec.push_back(cur_bbox_vec[i]);
}
else good_bbox_vec_flags[i] = false;
else good_bbox_vec_flags[i] = false;
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
}
}
prev_pts_flow = cur_pts_flow.clone();
return result_bbox_vec;
}
};
#else
//class Tracker_optflow {};
#endif // defined(TRACK_OPTFLOW) && defined(OPENCV)
#ifdef OPENCV
static cv::Scalar obj_id_to_color(int obj_id) {
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
int const offset = obj_id * 123457 % 6;
int const color_scale = 150 + (obj_id * 123457) % 100;
cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]);
color *= color_scale;
return color;
}
class preview_boxes_t {
enum { frames_history = 30 }; // how long to keep the history saved
struct preview_box_track_t {
unsigned int track_id, obj_id, last_showed_frames_ago;
bool current_detection;
bbox_t bbox;
cv::Mat mat_obj, mat_resized_obj;
preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {}
};
std::vector<preview_box_track_t> preview_box_track_id;
size_t const preview_box_size, bottom_offset;
bool const one_off_detections;
public:
preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) :
preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections)
{}
void set(cv::Mat src_mat, std::vector<bbox_t> result_vec)
{
size_t const count_preview_boxes = src_mat.cols / preview_box_size;
if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes);
// increment frames history
for (auto &i : preview_box_track_id)
i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1);
// occupy empty boxes
for (auto &k : result_vec) {
bool found = false;
// find the same (track_id)
for (auto &i : preview_box_track_id) {
if (i.track_id == k.track_id) {
if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects
found = true;
break;
}
}
if (!found) {
// find empty box
for (auto &i : preview_box_track_id) {
if (i.last_showed_frames_ago == frames_history) {
if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet
i.track_id = k.track_id;
i.obj_id = k.obj_id;
i.bbox = k;
i.last_showed_frames_ago = 0;
break;
}
}
}
}
// draw preview box (from old or current frame)
for (size_t i = 0; i < preview_box_track_id.size(); ++i)
{
// get object image
cv::Mat dst = preview_box_track_id[i].mat_resized_obj;
preview_box_track_id[i].current_detection = false;
for (auto &k : result_vec) {
if (preview_box_track_id[i].track_id == k.track_id) {
if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) {
preview_box_track_id[i].last_showed_frames_ago = frames_history; break;
}
bbox_t b = k;
cv::Rect r(b.x, b.y, b.w, b.h);
cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size());
cv::Rect rect_roi = r & img_rect;
if (rect_roi.width > 1 || rect_roi.height > 1) {
cv::Mat roi = src_mat(rect_roi);
cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST);
preview_box_track_id[i].mat_obj = roi.clone();
preview_box_track_id[i].mat_resized_obj = dst.clone();
preview_box_track_id[i].current_detection = true;
preview_box_track_id[i].bbox = k;
}
break;
}
}
}
}
void draw(cv::Mat draw_mat, bool show_small_boxes = false)
{
// draw preview box (from old or current frame)
for (size_t i = 0; i < preview_box_track_id.size(); ++i)
{
auto &prev_box = preview_box_track_id[i];
// draw object image
cv::Mat dst = prev_box.mat_resized_obj;
if (prev_box.last_showed_frames_ago < frames_history &&
dst.size() == cv::Size(preview_box_size, preview_box_size))
{
cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size());
cv::Mat dst_roi = draw_mat(dst_rect_roi);
dst.copyTo(dst_roi);
cv::Scalar color = obj_id_to_color(prev_box.obj_id);
int thickness = (prev_box.current_detection) ? 5 : 1;
cv::rectangle(draw_mat, dst_rect_roi, color, thickness);
unsigned int const track_id = prev_box.track_id;
std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : "";
putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2);
std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h);
putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
if (!one_off_detections && prev_box.current_detection) {
cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0),
cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h),
color);
}
if (one_off_detections && show_small_boxes) {
cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y),
cv::Size(prev_box.bbox.w, prev_box.bbox.h));
unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history;
color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history);
if (prev_box.mat_obj.size() == src_rect_roi.size()) {
prev_box.mat_obj.copyTo(draw_mat(src_rect_roi));
}
cv::rectangle(draw_mat, src_rect_roi, color, thickness);
putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
}
}
}
}
};
#endif // OPENCV
//extern "C" {
#endif // __cplusplus
/*
// C - wrappers
YOLODLL_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id);
YOLODLL_API void delete_detector();
YOLODLL_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size);
YOLODLL_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size);
YOLODLL_API bbox_t* detect(image_t img, int *result_size);
YOLODLL_API image_t load_img(char *image_filename);
YOLODLL_API void free_img(image_t m);
#ifdef __cplusplus
} // extern "C"
static std::shared_ptr<void> c_detector_ptr;
static std::vector<bbox_t> c_result_vec;
void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) {
c_detector_ptr = std::make_shared<YOLODLL_API Detector>(cfg_filename, weight_filename, gpu_id);
}
void delete_detector() { c_detector_ptr.reset(); }
bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) {
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean);
*result_size = c_result_vec.size();
return c_result_vec.data();
}
bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) {
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean);
*result_size = c_result_vec.size();
return c_result_vec.data();
}
bbox_t* detect(image_t img, int *result_size) {
return detect_custom(img, 0.24, true, result_size);
}
image_t load_img(char *image_filename) {
return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename);
}
void free_img(image_t m) {
static_cast<Detector*>(c_detector_ptr.get())->free_image(m);
}
#endif // __cplusplus
*/