-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathamplify_color.py
231 lines (190 loc) · 8.52 KB
/
amplify_color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import cv2
import numpy as np
import imutils
import scipy.signal as signal
import scipy.fftpack as fftpack
import time
import sys
from webcam import Webcam
from video import Video
from face_detection import FaceDetection
from interface import waitKey, plotXY
class VidMag():
def __init__(self):
self.webcam = Webcam()
self.buffer_size = 40
self.fps = 0
self.times = []
self.t0 = time.time()
self.data_buffer = []
#self.vidmag_frames = []
self.frame_out = np.zeros((10,10,3),np.uint8)
self.webcam.start()
print("init")
#--------------COLOR MAGNIFICATIONN---------------------#
def build_gaussian_pyramid(self,src,level=3):
s=src.copy()
pyramid=[s]
for i in range(level):
s=cv2.pyrDown(s)
pyramid.append(s)
return pyramid
def gaussian_video(self,video_tensor,levels=3):
for i in range(0,video_tensor.shape[0]):
frame=video_tensor[i]
pyr=self.build_gaussian_pyramid(frame,level=levels)
gaussian_frame=pyr[-1]
if i==0:
vid_data=np.zeros((video_tensor.shape[0],gaussian_frame.shape[0],gaussian_frame.shape[1],3))
vid_data[i]=gaussian_frame
return vid_data
def temporal_ideal_filter(self,tensor,low,high,fps,axis=0):
fft=fftpack.fft(tensor,axis=axis)
frequencies = fftpack.fftfreq(tensor.shape[0], d=1.0 / fps)
bound_low = (np.abs(frequencies - low)).argmin()
bound_high = (np.abs(frequencies - high)).argmin()
fft[:bound_low] = 0
fft[bound_high:-bound_high] = 0
fft[-bound_low:] = 0
iff=fftpack.ifft(fft, axis=axis)
return np.abs(iff)
def amplify_video(self,gaussian_vid,amplification=70):
return gaussian_vid*amplification
def reconstract_video(self,amp_video,origin_video,levels=3):
final_video=np.zeros(origin_video.shape)
for i in range(0,amp_video.shape[0]):
img = amp_video[i]
for x in range(levels):
img=cv2.pyrUp(img)
img=img+origin_video[i]
final_video[i]=img
return final_video
def magnify_color(self,data_buffer,fps,low=0.4,high=2,levels=3,amplification=30):
gau_video=self.gaussian_video(data_buffer,levels=levels)
filtered_tensor=self.temporal_ideal_filter(gau_video,low,high,fps)
amplified_video=self.amplify_video(filtered_tensor,amplification=amplification)
final_video = self.reconstract_video(amplified_video,data_buffer,levels=levels)
#print("c")
return final_video
#-------------------------------------------------------------#
#-------------------MOTION MAGNIFICATIONN---------------------#
#build laplacian pyramid for video
def laplacian_video(self,video_tensor,levels=3):
tensor_list=[]
for i in range(0,video_tensor.shape[0]):
frame=video_tensor[i]
pyr=self.build_laplacian_pyramid(frame,levels=levels)
if i==0:
for k in range(levels):
tensor_list.append(np.zeros((video_tensor.shape[0],pyr[k].shape[0],pyr[k].shape[1],3)))
for n in range(levels):
tensor_list[n][i] = pyr[n]
return tensor_list
#Build Laplacian Pyramid
def build_laplacian_pyramid(self, src,levels=3):
gaussianPyramid = self.build_gaussian_pyramid(src, levels)
pyramid=[]
for i in range(levels,0,-1):
GE=cv2.pyrUp(gaussianPyramid[i])
L=cv2.subtract(gaussianPyramid[i-1],GE)
pyramid.append(L)
return pyramid
#reconstract video from laplacian pyramid
def reconstract_from_tensorlist(self,filter_tensor_list,levels=3):
final=np.zeros(filter_tensor_list[-1].shape)
for i in range(filter_tensor_list[0].shape[0]):
up = filter_tensor_list[0][i]
for n in range(levels-1):
up=cv2.pyrUp(up)+filter_tensor_list[n + 1][i]
final[i]=up
return final
#butterworth bandpass filter
def butter_bandpass_filter(self, data, lowcut, highcut, fs, order=5):
omega = 0.5 * fs
low = lowcut / omega
high = highcut / omega
b, a = signal.butter(order, [low, high], btype='band')
y = signal.lfilter(b, a, data, axis=0)
return y
def magnify_motion(self,video_tensor,fps,low=0.4,high=1.5,levels=3,amplification=30):
lap_video_list=self.laplacian_video(video_tensor,levels=levels)
filter_tensor_list=[]
for i in range(levels):
filter_tensor=self.butter_bandpass_filter(lap_video_list[i],low,high,fps)
filter_tensor*=amplification
filter_tensor_list.append(filter_tensor)
recon=self.reconstract_from_tensorlist(filter_tensor_list)
final=video_tensor+recon
return final
#-------------------------------------------------------------#
def buffer_to_tensor(self, buffer):
tensor = np.zeros((len(buffer), 192, 256, 3), dtype = "float")
i = 0
for i in range(len(buffer)):
tensor[i] = buffer[i]
return tensor
def run_color(self):
self.times.append(time.time() - self.t0)
L = len(self.data_buffer)
#print(self.data_buffer)
if L > self.buffer_size:
self.data_buffer = self.data_buffer[-self.buffer_size:]
self.times = self.times[-self.buffer_size:]
#self.vidmag_frames = self.vidmag_frames[-self.buffer_size:]
L = self.buffer_size
if len(self.data_buffer) > self.buffer_size-1:
self.fps = float(L) / (self.times[-1] - self.times[0])
tensor = self.buffer_to_tensor(self.data_buffer)
final_vid = self.magnify_color(data_buffer = tensor, fps = self.fps)
#print(final_vid[0].shape)
#self.vidmag_frames.append(final_vid[-1])
#print(self.fps)
self.frame_out = final_vid[-1]
def run_motion(self):
self.times.append(time.time() - self.t0)
L = len(self.data_buffer)
#print(L)
if L > self.buffer_size:
self.data_buffer = self.data_buffer[-self.buffer_size:]
self.times = self.times[-self.buffer_size:]
#self.vidmag_frames = self.vidmag_frames[-self.buffer_size:]
L = self.buffer_size
if len(self.data_buffer) > self.buffer_size-1:
self.fps = float(L) / (self.times[-1] - self.times[0])
tensor = self.buffer_to_tensor(self.data_buffer)
final_vid = self.magnify_motion(video_tensor = tensor, fps = self.fps)
#print(self.fps)
#self.vidmag_frames.append(final_vid[-1])
self.frame_out = final_vid[-1]
def key_handler(self):
"""
A plotting or camera frame window must have focus for keypresses to be
detected.
"""
self.pressed = waitKey(1) & 255 # wait for keypress for 10 ms
if self.pressed == 27: # exit program on 'esc'
print("[INFO] Exiting")
self.webcam.stop()
sys.exit()
def mainLoop(self):
frame = self.webcam.get_frame()
f1 = imutils.resize(frame, width = 256)
#crop_frame = frame[100:228,200:328]
self.data_buffer.append(f1)
self.run_color()
#print(frame)
#if len(self.vidmag_frames) > 0:
#print(self.vidmag_frames[0])
cv2.putText(frame, "FPS "+str(float("{:.2f}".format(self.fps))),
(20,420), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0),2)
#frame[100:228,200:328] = cv2.convertScaleAbs(self.vidmag_frames[-1])
cv2.imshow("Original",frame)
#f2 = imutils.resize(cv2.convertScaleAbs(self.vidmag_frames[-1]), width = 640)
f2 = imutils.resize(cv2.convertScaleAbs(self.frame_out), width = 640)
cv2.imshow("Color amplification",f2)
self.key_handler() #if not the GUI cant show anything
if __name__ == "__main__":
#print("a")
app = VidMag()
while True:
app.mainLoop()