Skip to content

Latest commit

 

History

History
277 lines (192 loc) · 8.78 KB

File metadata and controls

277 lines (192 loc) · 8.78 KB

Let's start by generating data.

Assuming we have a sampling rate of 50 Hz over 10 seconds:

import numpy as np

sample_rate = 50  # 50 Hz resolution
signal_lenght = 10*sample_rate  # 10 seconds
# Generate a random x(t) signal with waves and noise. 
t = np.linspace(0, 10, signal_lenght)
g = 30*( np.sin((t/10)**2) )
x  = 0.30*np.cos(2*np.pi*0.25*t - 0.2) 
x += 0.28*np.sin(2*np.pi*1.50*t + 1.0)
x += 0.10*np.sin(2*np.pi*5.85*g + 1.0)
x += 0.09*np.cos(2*np.pi*10.0*t)
x += 0.04*np.sin(2*np.pi*20.0*t)
x += 0.15*np.cos(2*np.pi*135.0*(t/5.0-1)**2)
x += 0.04*np.random.randn(len(t))
# Normalize between -0.5 to 0.5: 
x -= np.min(x)
x /= np.max(x)
x -= 0.5

Filtering the generated data:

Let's keep only what's below 15 Hz with a butterworth low-pass filter of order 4. Sharper cutoff can be obtained with higher orders. Butterworth low-pass filters has frequency responses that look like that according to their order:

Butterworth low-pass filter

Let's proceed and filter the data.

from scipy import signal

import matplotlib.pyplot as plt
%matplotlib inline 


def butter_lowpass(cutoff, nyq_freq, order=4):
    normal_cutoff = float(cutoff) / nyq_freq
    b, a = signal.butter(order, normal_cutoff, btype='lowpass')
    return b, a

def butter_lowpass_filter(data, cutoff_freq, nyq_freq, order=4):
    b, a = butter_lowpass(cutoff_freq, nyq_freq, order=order)
    y = signal.filtfilt(b, a, data)
    return y


# Filter signal x, result stored to y: 
cutoff_frequency = 15.0
y = butter_lowpass_filter(x, cutoff_frequency, sample_rate/2)

# Difference acts as a special high-pass from a reversed butterworth filter. 
diff = np.array(x)-np.array(y)

# Visualize
plt.figure(figsize=(11, 9))
plt.plot(x, color='red', label="Original signal, {} samples".format(signal_lenght))
plt.plot(y, color='blue', label="Filtered low-pass with cutoff frequency of {} Hz".format(cutoff_frequency))
plt.plot(diff, color='gray', label="What has been removed")
plt.title("Signal and its filtering")
plt.xlabel('Time (1/50th sec. per tick)')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

png

Plotting the spectrum with STFTs.

Here, the Hanning window is used.

import scipy


def stft(x, fftsize=1024, overlap=4):
    # Short-time Fourier transform
    hop = fftsize / overlap
    w = scipy.hanning(fftsize+1)[:-1]      # better reconstruction with this trick +1)[:-1]  
    return np.array([np.fft.rfft(w*x[i:i+fftsize]) for i in range(0, len(x)-fftsize, hop)])

# Here we don't use the ISTFT but having the function may be useful to some, 
# it is a bit modified than what's found on Stack Overflow: 
# def istft(X, overlap=4):
#     # Inverse Short-time Fourier transform
#     fftsize=(X.shape[1]-1)*2
#     hop = fftsize / overlap
#     w = scipy.hanning(fftsize+1)[:-1]
#     x = scipy.zeros(X.shape[0]*hop)
#     wsum = scipy.zeros(X.shape[0]*hop) 
#     for n,i in enumerate(range(0, len(x)-fftsize, hop)): 
#         x[i:i+fftsize] += scipy.real(np.fft.irfft(X[n])) * w   # overlap-add
#         wsum[i:i+fftsize] += w ** 2.
#     pos = wsum != 0
#     x[pos] /= wsum[pos]
#     return x

def plot_stft(x, title, interpolation='bicubic'):
    # Use 'none' interpolation for a sharp plot. 
    plt.figure(figsize=(11, 4))
    sss = stft(np.array(x), window_size, overlap)
    complex_norm_tape = np.absolute(sss).transpose()
    plt.imshow(complex_norm_tape, aspect='auto', interpolation=interpolation, cmap=plt.cm.hot)
    plt.title(title)
    plt.xlabel('Time (1/50th sec. per tick)')
    plt.ylabel('Frequency (Hz)')
    plt.gca().invert_yaxis()
    # plt.yscale('log')
    plt.show()


window_size = 50  # a.k.a. fftsize
overlap = window_size  # This takes a maximal overlap


# Plots in the STFT time-frequency domain: 

plot_stft(x, "Original signal")
plot_stft(y, "Filtered signal")
plot_stft(diff, "Difference (notice changes in color due to plt's rescaling)")

png

png

png

Now, let's plot the Laplace transform.

To proceed, we will inspire ourselves of the already existing np.fft.rfft function for the imaginary part of the transform, but preprocessing multiple signals with pre-multiplied normalized exponentials for the real part of the exponential.

def laplace_transform(x, real_sigma_interval=np.arange(-1, 1 + 0.001, 0.001)):
    # Returns the Laplace transform where the first axis is the real range and second axis the imaginary range. 
    # Complex numbers are returned. 
    
    x = np.array(x)[::-1]  # The transform is from last timestep to first, so "x" is reversed
    
    d = []
    for sigma in real_sigma_interval:
        exp = np.exp( sigma*np.array(range(len(x))) )
        exp /= np.sum(exp)
        exponentiated_signal = exp * x
        # print (max(exponentiated_signal), min(exponentiated_signal))
        d.append(exponentiated_signal[::-1])  # re-reverse for straight signal
    
    # Now apply the imaginary part and "integrate" (sum)
    return np.array([np.fft.rfft(k) for k in d])


l = laplace_transform(x).transpose()

norm_surface = np.absolute(l)
angle_surface = np.angle(l)

# Plotting the transform: 

plt.figure(figsize=(11, 9))
plt.title("Norm of Laplace transform")
plt.imshow(norm_surface, aspect='auto', interpolation='none', cmap=plt.cm.rainbow)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()

plt.figure(figsize=(11, 9))
plt.title("Phase of Laplace transform")
plt.imshow(angle_surface, aspect='auto', interpolation='none', cmap=plt.cm.hsv)
plt.ylabel('Imaginary (Frequency, Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

plt.figure(figsize=(11, 9))
plt.title("Laplace transform, stacked phase and norm")
plt.imshow(angle_surface, aspect='auto', interpolation='none', cmap=plt.cm.hsv)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.colorbar()
plt.gca().invert_yaxis()
# Rather than a simple alpha channel option, I would have preferred a better transfer mode such as "multiply". 
plt.imshow(norm_surface, aspect='auto', interpolation='none', cmap=plt.cm.gray, alpha=0.9)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

plt.figure(figsize=(11, 9))
plt.title("Log inverse norm of Laplace transform")
plt.imshow(-np.log(norm_surface), aspect='auto', interpolation='none', cmap=plt.cm.summer)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

png

png

png

png

Other interesting stuff

If you want to know more about STFTs, FFTs, Laplace transforms and related signal processing stuff, you may want to watch those videos I gathered to understand the matter:

https://www.youtube.com/playlist?list=PLlp-GWNOd6m6gSz0wIcpvl4ixSlS-HEmr

Connect with me

# Let's convert this notebook to a README as the GitHub project's title page:
!jupyter nbconvert --to markdown Filtering.ipynb
!mv Filtering.md README.md
[NbConvertApp] Converting notebook Filtering.ipynb to markdown
[NbConvertApp] Support files will be in Filtering_files/
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Making directory Filtering_files
[NbConvertApp] Writing 8867 bytes to Filtering.md