forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_handler.py
50 lines (40 loc) · 1.7 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
import os
import cv2
import numpy as np
from skimage.measure import approximate_polygon, find_contours
from model_loader import ModelLoader
class ModelHandler:
def __init__(self, labels):
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
"/opt/nuclio/open_model_zoo/intel/semantic-segmentation-adas-0001/FP32"))
model_xml = os.path.join(base_dir, "semantic-segmentation-adas-0001.xml")
model_bin = os.path.join(base_dir, "semantic-segmentation-adas-0001.bin")
self.model = ModelLoader(model_xml, model_bin)
self.labels = labels
def infer(self, image, threshold):
output_layer = self.model.infer(image)
results = []
mask = output_layer[0, 0, :, :]
width, height = mask.shape
for i in range(len(self.labels)):
mask_by_label = np.zeros((width, height), dtype=np.uint8)
mask_by_label = ((mask == float(i)) * 255).astype(np.float32)
mask_by_label = cv2.resize(mask_by_label,
dsize=(image.width, image.height),
interpolation=cv2.INTER_CUBIC)
contours = find_contours(mask_by_label, 0.8)
for contour in contours:
contour = np.flip(contour, axis=1)
contour = approximate_polygon(contour, tolerance=2.5)
if len(contour) < 3:
continue
results.append({
"confidence": None,
"label": self.labels.get(i, "unknown"),
"points": contour.ravel().tolist(),
"type": "polygon",
})
return results