-
Notifications
You must be signed in to change notification settings - Fork 11
/
poster_landscape.tex
277 lines (253 loc) · 10.8 KB
/
poster_landscape.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
\documentclass[landscape,a0paper,fontscale=0.292]{baposter}
\usepackage[vlined]{algorithm2e}
\usepackage{times}
\usepackage{calc}
\usepackage{url}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{relsize}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage[T1]{fontenc}
\usepackage{ae}
\usepackage{enumitem}
\usepackage{colortbl}
\usepackage{xcolor}
\graphicspath{{images/}}
\setlist[itemize]{leftmargin=*,nosep}
\setlength{\columnsep}{0.7em}
\setlength{\columnseprule}{0mm}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Save space in lists. Use this after the opening of the list
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\compresslist}{%
\setlength{\itemsep}{0pt}%
\setlength{\parskip}{0pt}%
\setlength{\parsep}{0pt}%
}
\renewcommand{\rmdefault}{ptm} % Arial
\renewcommand{\sfdefault}{ptm} % Arial
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Begin of Document
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Here starts the poster
%%---------------------------------------------------------------------------
%% Format it to your taste with the options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{poster}{
% Show grid to help with alignment
grid=false,
columns=4,
% Column spacing
colspacing=0.7em,
% Color style
headerColorOne=cyan!20!white!90!black,
borderColor=cyan!30!white!90!black,
% Format of textbox
textborder=faded,
% Format of text header
headerborder=open,
headershape=roundedright,
headershade=plain,
background=none,
bgColorOne=cyan!10!white,
headerheight=0.12\textheight}
% Eye Catcher
{
\includegraphics[width=0.08\linewidth]{HKU_logo}
\makebox[0.04\textwidth]{}
}
% Title
{\sc\huge\bf TOM-Net: Learning Transparent Object Matting from a Single Image}
% Authors
{\vspace{0.3em} Guanying Chen*, Kai Han*, Kwan-Yee K. Wong \\[0.2em]
{The University of Hong Kong \\[0.2em] (* indicates equal contribution)}}
%{\texttt{\{gychen, khan, kykwong\}@cs.hku.hk}}}
% University logo
{
\begin{tabular}{r}
%\makebox[0.01\textwidth]{}
\includegraphics[width=0.12\linewidth]{cvpr18logo_3.jpg}
\end{tabular}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Now define the boxes that make up the poster
%%%---------------------------------------------------------------------------
%%% Each box has a name and can be placed absolutely or relatively.
%%% The only inconvenience is that you can only specify a relative position
%%% towards an already declared box. So if you have a box attached to the
%%% bottom, one to the top and a third one which should be inbetween, you
%%% have to specify the top and bottom boxes before you specify the middle
%%% box.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Problem Definition and Contribution}{name=contribution,column=0,row=0,span=1}{
\textbf{\color{blue}Goal:} Image matting for colorless transparent object from a single image.
\begin{center}
\vspace{-0.8em}
\centering\includegraphics[width=0.8\linewidth]{images/network_intro_v3}
\end{center}
\vspace{-1em}
\textbf{\color{blue}Motivations:}
\begin{itemize}
\item Existing alpha matting method cannot model the refractive effect of the transparent object.
\begin{center}
\vspace{-0.7em}
\centering\includegraphics[width=0.25\linewidth]{images/{glass}.jpg}
\centering\includegraphics[width=0.25\linewidth]{images/{alpha_matte}.png}
\centering\includegraphics[width=0.25\linewidth]{images/{composite}.jpg}
\\
\vspace{-0.6em}
\makebox[0.25\linewidth]{\scriptsize Photograph}
\makebox[0.25\linewidth]{\scriptsize Alpha matte}
\makebox[0.25\linewidth]{\scriptsize Composite}
\end{center}
\item \vspace{-0.8em}Existing matting approaches for transparent objects often require tedious capturing procedures and long processing time.
\end{itemize}
\vspace{0.2em}
\textbf{\color{blue}Key Contributions:}
\begin{itemize}
\item A simple and efficient model for colorless transparent object matting.
\item A convolutional neural network, TOM-Net, for estimating an environment matte of a transparent object from a single image in a fast feed-forward pass.
\item A large-scale synthetic dataset and a real dataset as a benchmark for learning transparent object matting.
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Problem Formulation}{name=formulation,column=1,row=0,span=1}{
\textbf{\color{blue}Main idea:} We formulate transparent object matting as simultaneous estimation of an object mask, an attenuation mask and a refractive flow field.
\begin{itemize}
\item The original environment matting equation:
\vspace{-0.5em}
\begin{equation}
C = F + (1-\alpha)B + \sum_{i=1}^{m} R_i \mathcal{M}(\mathbf{T}_i, \mathbf{A}_i),
\vspace{-0.2em}
\end{equation}
where $F$, $B$ and $\alpha$ denote the ambient illumination, background color and opacity, respectively. $R_i$ is a factor describing the contribution of light emanating from the $i$-$th$ background image $\mathbf{T}_i$. $\mathcal{M}(\mathbf{T}_i, \mathbf{A}_i)$ denotes the average color of a rectangular region $\mathbf{A}_i$ on the background image $\mathbf{T}_i$.
\vspace{0.2em}
\item Considering a perfect transparent object and a single background image as the only light source:
\vspace{-0.5em}
\begin{equation}
C = (1-\alpha)B + R \mathcal{M}(\mathbf{T}, P),
\vspace{-0.3em}
\end{equation}
where $P$ is a point in the background $\mathbf{T}$.
\item Assuming a colorless transparent object:
\vspace{-0.5em}
\begin{equation}
C = (1-\alpha)B + \rho \mathcal{M}(\mathbf{T}, P), \quad \rho \in [0, 1],
\vspace{-0.3em}
\end{equation}
where $R$ degenerates to a scalar attenuation $\rho$.
\item Further introducing a binary foreground mask:
\begin{equation}
\label{eq:em_simplify3}
C = (1 - m) B + m\rho \mathcal{M}(\mathbf{T}, P), \quad m \in\{0, 1\}.
\end{equation}
\item For each observed pixel $C$, we have to estimate 7 unknowns ($3$ for $B$, $2$ for $P$, $1$ for $m$ and $1$ for $\rho$).
\end{itemize}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Experiments \& Results}{name=results,column=2,row=0,span=2}{
\textbf{\color{blue}Dataset:}
\begin{minipage}{0.50\linewidth}
\begin{itemize}
\item We created a large-scale synthetic dataset for training and a real dataset for testing.
\item Trained only on the synthetic dataset, TOM-Net can generalize well to real world objects, demonstrating its good transferability.
\end{itemize}
\begin{center}
Statistics of the introduced datasets
\resizebox{\linewidth}{!}{
\begin{tabular}{c|*{6}{c}}
\toprule
Type & Glass & Glass \& Water & Lens & Complex & Total \\
\midrule
Synthetic Train & 52K & 26K & 20K & 80K & 178K\\
Synthetic Val & 250 & 250 & 200 & 200 & 900\\
\midrule
Real Test & 470 & 103 & 61 & 242 & 876 \\
\bottomrule
\end{tabular}
}
\end{center}
\end{minipage}
\begin{minipage}{0.5\linewidth}
\begin{center}
Samples of synthetic data
\includegraphics[width=\linewidth]{images/syn_data_sample}
\end{center}
\end{minipage}
\textbf{\color{blue}Quantitative results on synthetic dataset:}
\input{figures/syn_quant}
\vspace{0.5em}
\textbf{\color{blue}Qualitative results on real dataset:}
\begin{center}
\vspace{-0.8em}
\includegraphics[width=0.92\linewidth]{images/real_qual.pdf}
\vspace{-1em}
\end{center}
\vspace{0.5em}
\begin{minipage}[t]{0.5\linewidth}
\textbf{\color{blue}Visualization of the effectiveness of RefineNet:}
\input{figures/refine_vis}
\end{minipage}
\begin{minipage}[t]{0.5\linewidth}
\textbf{\color{blue}Quantitative results on real dataset:}
\input{figures/real_quant}
\hfill\begin{minipage}{0.46\linewidth}
\begin{center}
\textbf{Project Webpage}: \\
\vspace{0.5em}\textbf{Code} \& \textbf{Dataset} \& \textbf{Model}
\end{center}
\end{minipage}
\begin{minipage}{0.24\linewidth}
\begin{center}
\includegraphics[width=\linewidth]{images/frame.png}
\end{center}
\end{minipage}
\end{minipage}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{blue} Method}{name=abstract,column=0,below=contribution,span=2}{
TOM-Net comprises two parts, namely a multi-scale encoder-decoder network for producing a coarse prediction, and a residual network for refinement.
\vspace{-0.2em}
\begin{center}
\includegraphics[width=0.9\textwidth]{images/framework_v3.pdf}
\end{center}
\vspace{-0.5em}
\begin{minipage}[t]{0.48\linewidth}
\textbf{\color{blue}Loss function for coase stage:}
\vspace{-0.5em}
\begin{align}
\mathcal{L}^c = \alpha^c_{ms} \mathcal{L}_{ms} + \alpha^c_{ar} \mathcal{L}_{ar} + \alpha^c_{fr} \mathcal{L}_{fr} + \alpha^c_{ir} \mathcal{L}_{ir}
\end{align}
\begin{itemize}
\vspace{-0.5em}
\item $\mathcal{L}_{ms}$: Object mask segmentation loss (Cross entropy)
\item $\mathcal{L}_{ar}$: Attenuation regression loss (MSE)
\item $\mathcal{L}_{fr}$: Refractive flow regression loss (EPE)
\item $\mathcal{L}_{ir}$: Image reconstruction loss (MSE)
\item $\alpha^{c}_{\cdot}$: Weights for the loss terms
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}[t]{0.48\linewidth}
\textbf{\color{blue}Loss function for refinement stage:}
\vspace{-0.5em}
\begin{align}
\mathcal{L}^r = \alpha^r_{ar} \mathcal{L}^r_{ar} + \alpha^r_{fr} \mathcal{L}^r_{fr} ,
\end{align}
\begin{itemize}
\vspace{-0.5em}
\item $\mathcal{L}^r_{ar}$: Refinement attenuation regression loss (MSE)
\item $\mathcal{L}^r_{fr}$: Refinement refractive flow regression loss (EPE)
\item $\alpha^{r}_{\cdot}$: Weights for the loss terms
\end{itemize}
\end{minipage}
}
\end{poster}
\end{document}