-
Notifications
You must be signed in to change notification settings - Fork 3
/
python-ssim.py
92 lines (72 loc) · 2.81 KB
/
python-ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
'''
Created on 21 nov. 2011
@author: Antoine Vacavant, ISIT lab, [email protected], http://isit.u-clermont1.fr/~anvacava
Modified by Christopher Godfrey, on 17 July 2012 (lines 32-34)
'''
import numpy
import scipy.ndimage
from scipy.ndimage import imread
from numpy.ma.core import exp
from scipy.constants.constants import pi
img_mat_1=imread('../mountain/5474.jpg', flatten=True)
img_mat_2=imread('../mountain/1.jpg', flatten=True)
'''
The function to compute SSIM
@param param: img_mat_1 1st 2D matrix
@param param: img_mat_2 2nd 2D matrix
'''
def compute_ssim(img_mat_1, img_mat_2):
#Variables for Gaussian kernel definition
gaussian_kernel_sigma=1.5
gaussian_kernel_width=11
gaussian_kernel=numpy.zeros((gaussian_kernel_width,gaussian_kernel_width))
#Fill Gaussian kernel
for i in range(gaussian_kernel_width):
for j in range(gaussian_kernel_width):
gaussian_kernel[i,j]=\
(1/(2*pi*(gaussian_kernel_sigma**2)))*\
exp(-(((i-5)**2)+((j-5)**2))/(2*(gaussian_kernel_sigma**2)))
#Convert image matrices to double precision (like in the Matlab version)
img_mat_1=img_mat_1.astype(numpy.float)
img_mat_2=img_mat_2.astype(numpy.float)
#Squares of input matrices
img_mat_1_sq=img_mat_1**2
img_mat_2_sq=img_mat_2**2
img_mat_12=img_mat_1*img_mat_2
#Means obtained by Gaussian filtering of inputs
img_mat_mu_1=scipy.ndimage.filters.convolve(img_mat_1,gaussian_kernel)
img_mat_mu_2=scipy.ndimage.filters.convolve(img_mat_2,gaussian_kernel)
#Squares of means
img_mat_mu_1_sq=img_mat_mu_1**2
img_mat_mu_2_sq=img_mat_mu_2**2
img_mat_mu_12=img_mat_mu_1*img_mat_mu_2
#Variances obtained by Gaussian filtering of inputs' squares
img_mat_sigma_1_sq=scipy.ndimage.filters.convolve(img_mat_1_sq,gaussian_kernel)
img_mat_sigma_2_sq=scipy.ndimage.filters.convolve(img_mat_2_sq,gaussian_kernel)
#Covariance
img_mat_sigma_12=scipy.ndimage.filters.convolve(img_mat_12,gaussian_kernel)
#Centered squares of variances
img_mat_sigma_1_sq=img_mat_sigma_1_sq-img_mat_mu_1_sq
img_mat_sigma_2_sq=img_mat_sigma_2_sq-img_mat_mu_2_sq
img_mat_sigma_12=img_mat_sigma_12-img_mat_mu_12;
#c1/c2 constants
#First use: manual fitting
c_1=6.5025
c_2=58.5225
#Second use: change k1,k2 & c1,c2 depend on L (width of color map)
l=255
k_1=0.01
c_1=(k_1*l)**2
k_2=0.03
c_2=(k_2*l)**2
#Numerator of SSIM
num_ssim=(2*img_mat_mu_12+c_1)*(2*img_mat_sigma_12+c_2)
#Denominator of SSIM
den_ssim=(img_mat_mu_1_sq+img_mat_mu_2_sq+c_1)*\
(img_mat_sigma_1_sq+img_mat_sigma_2_sq+c_2)
#SSIM
ssim_map=num_ssim/den_ssim
index=numpy.average(ssim_map)
print index
return index
compute_ssim(img_mat_1, img_mat_2)