-
Notifications
You must be signed in to change notification settings - Fork 11
/
09-sle_ifn_data_prep.Rmd
610 lines (508 loc) · 21 KB
/
09-sle_ifn_data_prep.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
---
title: "SLE IFN clinical trials - data preparation"
output:
html_notebook:
toc: true
toc_float: true
---
Our SLE WB compendium includes [a trial of interferon-alpha-kinoid (IFN-K)](https://doi.org/10.1002/art.37785),
which should block type I IFN only and therefore the expression levels of
IFN-alpha/IFN-beta gene signatures should decrease during treatment (leaving
IFN-gamma signature expression relatively unchanged).
[A trial of AMG-811](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054935/),
which is a monoclonal antibody against IFN-gamma, is also included. We expected
to see IFN-gamma gene expression decrease in the AMG-811 during treatment.
In this notebook, we'll tidy data in preparation for analyzing changes in
IFN-related gene expression using a couple different gene sets or models --
modular transcriptional analyses (from
[Chiche, et al. 2014.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157826/)),
a PLIER model trained on the SLE WB compendium and a PLIER model trained on
recount2 data.
For more information about the types of IFNs, see the intro to
`08-identify_ifn_LVs`.
## Functions and directory set up
```{r}
`%>%` <- dplyr::`%>%`
```
#### Functions specifically for modular analyses
```{r}
ReadInTribeConversions <- function(filename) {
# Reads in csv file downloaded from Tribe and returns character vector.
# The gene identifiers start at the 7th line.
#
# Args:
# filename: full path to csv file containing the list of gene identifers
#
# Returns:
# geneset: a vector (character) of gene identifiers
#
geneset <- readLines(filename)
geneset <- geneset[7:length(geneset)]
geneset <- gsub("\t", "", geneset)
return(geneset)
}
GetGeneSetMean <- function(gene.set, exprs) {
# Summarize the expression levels of genes in a gene set by taking the mean
# expression value of all genes in that gene set
#
# Args:
# gene.set: vector of gene identifiers -- corresponds to the geneset to be
# summarized
# exprs: data.frame that contains the expression values (rows are genes,
# columns are samples); first column -- "Gene" -- contains gene ids
# (match the type of identifiers used in gene.set)
#
# Returns:
# summary.df: a data.frame, 1 row corresponding to the mean expression
# values for genes in gene.set, columns are samples
#
if (colnames(exprs)[1] != "Gene") {
stop("The first column must contain gene identifiers and have
the colname 'Gene'")
}
`%>%` <- dplyr::`%>%`
summary.df <- exprs %>%
dplyr::filter(Gene %in% gene.set) %>%
dplyr::select(-Gene) %>%
dplyr::summarise_all(mean)
return(summary.df)
}
```
```{r}
# plot and result directory setup for this notebook
plot.dir <- file.path("plots", "09")
dir.create(plot.dir, recursive = TRUE, showWarnings = FALSE)
results.dir <- file.path("results", "09")
dir.create(results.dir, recursive = TRUE, showWarnings = FALSE)
```
```{r}
# set seed for reproducibility (plot jitter)
set.seed(123)
```
## IFN-K
**E-GEOD-39088; Lauwerys, et al. 2013.**
First, I'll summarize some relevant points from Lauwerys, et al.:
* IFN-K is a therapeutic vaccine.
It induces IFN-alpha antibodies in those who receive it.
In turn, those antibodies will bind IFN-alpha and therefore reduce its
activity/ability to stimulate the immune system.
* Patients with SLE were treated with one of four doses of IFN-K or placebo.
* Whole blood was collected from patients at days 0 (baseline), 112, and 168.
* Healthy control blood was also included (2 samples from each control);
one of these healthy control blood samples was treated with type I IFNs
(IFN-alpha subtype(s) specifically) to derive an IFN-inducible gene expression
signature.
* The authors stratified patients into _IFN-positive_ (n = 18) and
_IFN-negative_ (n = 9) groups based on the expression levels of the
IFN-inducible gene signature at baseline.
* Patients with a IFN-positive baseline signature had a reduction in
IFN-inducible treatment during treatment.
We do not have information about which patients are in which of these two
groups, so we'll have to designate IFN-positive and IFN-negative samples based
on our own results.
### Modular transcriptional analyses
Module gene set information was obtained from
[the associated public wiki](https://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules)
and converted to Entrez IDs with [Tribe](http://tribe.greenelab.com/).
The resulting gene sets are in `data/module_genesets`.
In Chiche, et al., it was demonstrated that `M1.2`, `M3.4`, and `M5.12` are all
associated with IFN.
More specifically, `M1.2` captures mostly type I IFN-inducible gene expression,
whereas the other two modules are likely induced by type II IFN (though type I
IFN-inducible may be captured as well).
#### Read in SLE WB data (Entrez IDs)
```{r}
exprs.file <- file.path("data", "expression_data",
"SLE_WB_all_microarray_QN_zto_before.pcl")
exprs.df <- data.table::fread(exprs.file, data.table = FALSE)
```
#### Summarize modules' gene expression
All SLE data
```{r}
# read in Tribe-converted genesets
mod.file.list <-
list(M1.2 = file.path("data", "module_genesets",
"Chiche et al M1.2 module-6b45452.csv"),
M3.4 = file.path("data", "module_genesets",
"Chiche et al M3.4 module-7ab0d0d.csv"),
M5.12 = file.path("data", "module_genesets",
"Chiche et al M5.12 module-f326fe4.csv"))
entrez.mod.list <- lapply(mod.file.list,
function(x) ReadInTribeConversions(x))
```
```{r}
# get expression summary (mean)
mod.summary.list <-
lapply(entrez.mod.list, function(x) GetGeneSetMean(x, exprs.df))
# tidy
mod.summary.df <- reshape2::melt(mod.summary.list)
colnames(mod.summary.df) <- c("Source Name", "Summary", "Module")
# write to file
readr::write_tsv(x = mod.summary.df,
path = file.path(results.dir,
"SLE-WB_Chiche_et_al_module_summary.tsv"))
```
#### Sample-data relationship
```{r}
e.39088.sdrf <- data.table::fread(file.path("data",
"sample_info",
"E-GEOD-39088.sdrf.txt"),
data.table = FALSE)
array.att <- e.39088.sdrf[, c("Source Name",
"Comment [Sample_characteristics]",
"Characteristics [disease state]",
"Comment [Sample_source_name]",
"Comment [Sample_title]")]
# source name must match exprs.df colnames (CEL file names) in order to
# join df
array.att <-
array.att %>%
dplyr::mutate(`Source Name` = gsub(" 1", "", `Source Name`))
array.att$`Source Name` <-
unlist(lapply(array.att$`Source Name`,
function(x) colnames(exprs.df)[grep(x, colnames(exprs.df))]))
colnames(array.att)[2:ncol(array.att)] <- c("Day", "Disease state",
"Treatment", "Patient")
```
#### Main
```{r}
# right join, only want arrays in this data set
mod.meta.df <-
dplyr::right_join(mod.summary.df, array.att, by = "Source Name")
# baseline and healthy unstimulated only
baseline.mod.df <-
dplyr::bind_rows(dplyr::filter(mod.meta.df, Day == "day: 0"),
dplyr::filter(mod.meta.df,
`Disease state` == "healthy" & !(grepl("unstimulated",
Treatment))))
rm(mod.meta.df)
```
```{r}
p <- ggplot2::ggplot(baseline.mod.df,
ggplot2::aes(x = `Disease state`, y = Summary)) +
ggplot2::geom_jitter(ggplot2::aes(colour = `Disease state`), width = 0.2) +
ggplot2::stat_summary(fun.y = "median", size = 4, shape = 18,
geom = "point", color = "black") +
ggplot2::facet_grid(~ Module) +
ggplot2::theme_bw() +
ggplot2::labs(y = "mean expression of genes in module\n(per sample)",
title = "IFN Modular Framework Expression - Baseline",
subtitle = "Lauwerys, et al.") +
ggplot2::scale_color_manual(values = c("seagreen3", "#3182bd")) +
ggplot2::theme(legend.position = "none")
p
```
Note that the increase in `M1.2` expression was shown to be more strongly
induced by IFN-beta than IFN-alpha in Chiche, et al.
```{r}
# save plot
plot.file <- file.path(plot.dir,
"E-GEOD-39088_Chiche_et_al_baseline.pdf")
ggplot2::ggsave(plot.file, plot = p +
ggplot2::theme(text = ggplot2::element_text(size = 15)))
```
```{r}
# which are likely the 9 IFN-negative patients in the original publication
# we don't have these labels
low.ifn.sle <- dplyr::filter(baseline.mod.df,
`Disease state` == "SLE") %>%
dplyr::group_by(Module) %>%
dplyr::top_n((Summary * -1), n = 9)
# call low samples 9 lowest M1.2 scores -- TYPE I INTERFERON
low.ifn.samples <-low.ifn.sle$`Source Name`[low.ifn.sle$Module == "M1.2"]
low.ifn.samples
```
```{r}
# remove low ifn samples that are placebo, that will be its own category
low.ifn.samples <-
low.ifn.samples[!grepl("Placebo",
array.att$`Treatment`
[array.att$`Source Name` %in% low.ifn.samples])]
# get the treatment day (or timepoint information) from treatment column
# and get the patient identifier from patient column
array.att <-
array.att %>%
dplyr::mutate(Day = sub("^\\s+", "", sub(".*[,]", "", Treatment)),
Patient = sub("^\\s+", "", sub(".*[,]", "", Patient)))
# healthy controls do not have timepoint information, so replace with NA
array.att$Day[!grepl(paste(c("day", "baseline"), collapse = "|"),
array.att$Day)] <- NA
# add a column that contains grouping information (IFN-K treated, placebo
# unstimulated control, stimulated control)
array.att <-
array.att %>%
dplyr::mutate(Group =
dplyr::case_when(
grepl("IFN-K", array.att$Treatment) ~ "IFN-K",
grepl("Placebo", array.att$Treatment) ~ "Placebo",
grepl("absence", array.att$Treatment) ~
"Control, no treatment",
grepl("unstimulated = ", array.att$Treatment) ~
"Control, stimulated"
))
# which patients are in the following groups - placebo, IFN-positive,
# IFN-negative
low.ifn.pat <-
array.att$Patient[which(array.att$`Source Name` %in% low.ifn.samples)]
placebo.pat <- unique(array.att$Patient[which(array.att$Group == "Placebo")])
hi.ifn.pat <- setdiff(array.att$Patient, c(low.ifn.pat, placebo.pat))
hi.ifn.pat <- hi.ifn.pat[grep("patient", hi.ifn.pat)]
array.att <-
array.att %>%
dplyr::mutate(`IFN-level` = rep(NA, nrow(array.att))) %>%
dplyr::mutate(`IFN-level` = dplyr::case_when(
(Patient %in% low.ifn.pat) ~ "IFN-negative",
(Patient %in% placebo.pat) ~ "Placebo",
(Patient %in% hi.ifn.pat) ~ "IFN-positive"
))
# right join, only want arrays in this data set
mod.meta.df <-
dplyr::right_join(mod.summary.df, array.att, by = "Source Name")
# write to file
readr::write_tsv(mod.meta.df,
path = file.path(results.dir,
"E-GEOD-39088_Chiche_et_al_module.tsv"))
```
```{r}
rm(list = setdiff(ls(), c("%>%", "mod.summary.df", "array.att",
"results.dir", "plot.dir")))
array.att <- dplyr::select(array.att, -`IFN-level`)
```
### PLIER trained on SLE WB compendium
```{r}
sle.b.df <- readr::read_tsv(file.path("results", "05",
"SLE-WB_PLIER_B_tidy.tsv"))
```
Need to find which samples would be considered IFN-positive vs.
IFN-negative using this information
```{r}
ifn.b.df <- sle.b.df %>%
dplyr::filter(LV %in% c("LV6", "LV69", "LV110")) %>%
dplyr::right_join(y = array.att, by = c("Sample" = "Source Name"))
baseline.df <-
dplyr::bind_rows(dplyr::filter(ifn.b.df, Day == "baseline"),
dplyr::filter(ifn.b.df,
`Disease state` == "healthy" & !(grepl("unstimulated",
Treatment))))
```
```{r}
p <- baseline.df %>%
ggplot2::ggplot(ggplot2::aes(x = `Disease state`, y = Value)) +
ggplot2::geom_jitter(ggplot2::aes(colour = `Disease state`), width = 0.2) +
ggplot2::stat_summary(fun.y = "median", size = 4, shape = 18,
geom = "point", color = "black") +
ggplot2::facet_grid(~ LV) +
ggplot2::theme_bw() +
ggplot2::labs(y = "LV value",
title = "SLE WB PLIER - Baseline",
subtitle = "Lauwerys, et al.") +
ggplot2::scale_color_manual(values = c("seagreen3", "#3182bd")) +
ggplot2::theme(legend.position = "none")
p
```
```{r}
# save plot
plot.file <- file.path(plot.dir,
"E-GEOD-39088_SLE-WB_PLIER_baseline.pdf")
ggplot2::ggsave(plot.file, plot = p +
ggplot2::theme(text = ggplot2::element_text(size = 15)))
```
```{r}
# which are likely the 9 IFN-negative patients in
low.ifn.sle <- dplyr::filter(baseline.df,
`Disease state` == "SLE") %>%
dplyr::group_by(LV) %>%
dplyr::top_n((Value * -1), n = 9) %>%
dplyr::arrange(LV)
low.ifn.sle
```
```{r}
table(low.ifn.sle$Patient)
```
We'll call anything that's one of the 9 lowest samples (in more than one LV)
IFN-negative for this method.
```{r}
low.ifn.pat <- names(table(low.ifn.sle$Patient))[table(low.ifn.sle$Patient) > 1]
placebo.pat <-
unique(baseline.df$Patient[which(baseline.df$Group == "Placebo")])
# remove low IFN patients that are on placebo
low.ifn.pat <- setdiff(low.ifn.pat, placebo.pat)
hi.ifn.pat <- setdiff(array.att$Patient, c(low.ifn.pat, placebo.pat))
hi.ifn.pat <- hi.ifn.pat[grep("patient", hi.ifn.pat)]
ifn.b.df <-
ifn.b.df %>%
dplyr::mutate(`IFN-level` = rep(NA, nrow(ifn.b.df))) %>%
dplyr::mutate(`IFN-level` = dplyr::case_when(
(Patient %in% low.ifn.pat) ~ "IFN-negative",
(Patient %in% placebo.pat) ~ "Placebo",
(Patient %in% hi.ifn.pat) ~ "IFN-positive"
)) %>%
readr::write_tsv(path = file.path(results.dir,
"E-GEOD-39088_SLE-WB_PLIER_IFN_B.tsv"))
```
```{r}
rm(list = setdiff(ls(), c("%>%", "mod.summary.df", "array.att",
"sle.b.df", "plot.dir", "results.dir")))
```
### Read in SLE B matrix (in recount2 space)
```{r}
# read in B matrix
rec.b.file <- file.path("results", "07", "SLE-WB_B_matrix_recount2_model.RDS")
recount.b.mat <- as.data.frame(readRDS(rec.b.file))
recount.b.mat <- tibble::rownames_to_column(recount.b.mat, var = "Annotated")
# reshape
recount.b.df <- reshape2::melt(recount.b.mat)
recount.b.df <-
recount.b.df %>%
dplyr::mutate(LV = rep(paste0("LV", 1:nrow(recount.b.mat)),
ncol(recount.b.mat) - 1))
colnames(recount.b.df) <- c("Annotated", "Sample", "Value", "LV")
recount.b.df <- recount.b.df[, c("Sample", "LV", "Annotated", "Value")]
head(recount.b.df)
```
```{r}
ifn.b.df <- recount.b.df %>%
dplyr::filter(LV %in% c("LV116", "LV140")) %>%
dplyr::right_join(y = array.att, by = c("Sample" = "Source Name"))
baseline.df <-
dplyr::bind_rows(dplyr::filter(ifn.b.df, Day == "baseline"),
dplyr::filter(ifn.b.df,
`Disease state` == "healthy" & !(grepl("unstimulated",
Treatment))))
```
```{r}
p <- baseline.df %>%
ggplot2::ggplot(ggplot2::aes(x = `Disease state`, y = Value)) +
ggplot2::geom_jitter(ggplot2::aes(colour = `Disease state`), width = 0.2) +
ggplot2::stat_summary(fun.y = "median", size = 4, shape = 18,
geom = "point", color = "black") +
ggplot2::facet_grid(~ LV) +
ggplot2::theme_bw() +
ggplot2::labs(y = "LV value",
title = "recount PLIER - Baseline",
subtitle = "Lauwerys, et al.") +
ggplot2::scale_color_manual(values = c("seagreen3", "#3182bd")) +
ggplot2::theme(legend.position = "none")
p
```
It looks like there's little difference between `LV140` in healthy controls and
patients with SLE (at baseline).
This LV should capture IFN-gamma signaling (much like `M3.4` and `M5.12`) and
it shows a similar pattern of expression to `M5.12`.
```{r}
# save plot
plot.file <- file.path(plot.dir,
"E-GEOD-39088_recount2_PLIER_baseline.pdf")
ggplot2::ggsave(plot.file, plot = p +
ggplot2::theme(text = ggplot2::element_text(size = 15)))
```
We'll call the 9 patients with the lowest `LV116` values at baseline
IFN-negative in this method.
```{r}
# which are likely the 9 IFN-negative patients in
low.ifn.sle <- dplyr::filter(baseline.df,
`Disease state` == "SLE",
LV == "LV116") %>%
dplyr::group_by(LV) %>%
dplyr::top_n((Value * -1), n = 9)
low.ifn.pat <- low.ifn.sle$Patient
placebo.pat <-
unique(baseline.df$Patient[which(baseline.df$Group == "Placebo")])
# remove low IFN patients that are on placebo
low.ifn.pat <- setdiff(low.ifn.pat, placebo.pat)
hi.ifn.pat <- setdiff(array.att$Patient, c(low.ifn.pat, placebo.pat))
hi.ifn.pat <- hi.ifn.pat[grep("patient", hi.ifn.pat)]
```
```{r}
ifn.b.df <-
ifn.b.df %>%
dplyr::mutate(`IFN-level` = rep(NA, nrow(ifn.b.df))) %>%
dplyr::mutate(`IFN-level` = dplyr::case_when(
(Patient %in% low.ifn.pat) ~ "IFN-negative",
(Patient %in% placebo.pat) ~ "Placebo",
(Patient %in% hi.ifn.pat) ~ "IFN-positive"
)) %>%
readr::write_tsv(path = file.path(results.dir,
"E-GEOD-39088_recount2_PLIER_IFN_B.tsv"))
```
```{r}
rm(list = setdiff(ls(), c("%>%", "mod.summary.df", "recount.b.df",
"sle.b.df", "plot.dir", "results.dir")))
```
## AMG 811
**E-GEOD-78193; Welcher, et al. 2015.**
I'll summarize some of the relevant points from Welcher, et al.:
* AMG 811 is a monoclonal antibody against IFN-gamma (type II IFN).
* Patients with SLE received either AMG 811 (different doses and/or
adminstration methods) or placebo.
* Whole blood was collected from patients with SLE at day 1 (baseline), day 15,
day 56, and at the end of the study (EOS).
* Whole blood was also collected from healthy controls and either stimulated
with IFN-gamma for (0, 24, or 48 hrs) or were untreated.
The authors identified genes that were differentially expressed between
unstimulated and IFN-gamma stimulated samples (IFN-gamma signature).
IFN-gamma scores calculated using these genes were similar to other
(previously published) IFN gene sets.
* Post-treatment (AMG811) samples showed a significant decrease in a
number of the IFN-gamma signature genes
#### Sample-data relationship file
```{r}
e.78193.sdrf <- data.table::fread(file.path("data",
"sample_info",
"E-GEOD-78193.sdrf.txt"),
data.table = FALSE)
array.att <- e.78193.sdrf[, c("Source Name",
"Comment [Sample_source_name]",
"Characteristics [subject]",
"Characteristics [treatment day]",
"Comment [Sample_title]")]
array.att <-
array.att %>%
dplyr::mutate(Sample = sub(" 1", "", `Source Name`)) %>%
dplyr::select(-`Source Name`)
colnames(array.att)[1:4] <- c("Disease state", "Subject",
"Day", "Treatment")
# remove IFN-gamma stimulated samples, we won't be using them downstream
array.att <-
array.att %>%
dplyr::filter(!(grepl("+ IFN-g", Treatment))) %>%
dplyr::select(-Treatment) %>%
dplyr::mutate(`Disease state` =
dplyr::recode(`Disease state`,
"systemic lupus erythematosus (SLE) patient" = "SLE",
"healthy volunteer" = "healthy"))
```
### Modular transcriptional analyses
```{r}
# join sample information with the summary of the module gene sets
mod.meta.df <- dplyr::right_join(mod.summary.df, array.att,
by = c("Source Name" = "Sample"))
# write to file
mod.file <- file.path(results.dir,
"E-GEOD-78193_Chiche_et_al_module.tsv")
readr::write_tsv(mod.meta.df, path = mod.file)
```
```{r}
rm(mod.file, mod.meta.df)
```
### PLIER trained on SLE WB compendium
```{r}
# join sample info with SLE WB PLIER LVs
sle.b.meta.df <- dplyr::right_join(sle.b.df, array.att, by = "Sample") %>%
dplyr::filter(LV %in% c("LV6", "LV69", "LV110"))
# write to file
sle.b.file <- file.path(results.dir, "E-GEOD-78193_SLE-WB_PLIER_IFN_B.tsv")
readr::write_tsv(sle.b.meta.df, path = sle.b.file)
```
```{r}
rm(sle.b.meta.df)
```
### PLIER trained on recount2
```{r}
# join sample info with SLE WB PLIER LVs
rec.b.meta.df <- dplyr::right_join(recount.b.df, array.att, by = "Sample") %>%
dplyr::filter(LV %in% c("LV116", "LV140"))
# write to file
rec.b.file <- file.path(results.dir, "E-GEOD-78193_recount2_PLIER_IFN_B.tsv")
readr::write_tsv(rec.b.meta.df, path = rec.b.file)
```