forked from cardiffnlp/tweeteval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_script.py
140 lines (111 loc) · 4.56 KB
/
evaluation_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# usage: evaluaton_script.py [-h] [--tweeteval_path TWEETEVAL_PATH]
# [--predictions_path PREDICTIONS_PATH] [--task TASK]
# optional arguments:
# -h, --help: show this help message and exit
# --tweeteval_path: Path to TweetEval dataset
# --predictions_path: Path to predictions files
# --task: Use this to get single task detailed results
# (emoji|emotion|hate|irony|offensive|sentiment|stance)
#
from sklearn.metrics import classification_report
import argparse
import os
TASKS = [
'emoji',
'emotion',
'hate',
'irony',
'offensive',
'sentiment',
'stance']
STANCE_TASKS = [
'abortion',
'atheism',
'climate',
'feminist',
'hillary']
def load_gold_pred(args):
tweeteval_path = args.tweeteval_path
predictions_path = args.predictions_path
task = args.task
if 'stance' in task:
gold = []
pred = []
for stance_t in STANCE_TASKS:
gold_path = os.path.join(tweeteval_path,task,stance_t,'test_labels.txt')
pred_path = os.path.join(predictions_path,task,stance_t+'.txt')
gold.append(open(gold_path).read().split("\n")[:-1])
pred.append(open(pred_path).read().split("\n")[:-1])
# flatten lists of lists
gold = [p for each_target in gold for p in each_target]
pred = [p for each_target in pred for p in each_target]
else:
gold_path = os.path.join(tweeteval_path,task,'test_labels.txt')
pred_path = os.path.join(predictions_path,task+'.txt')
gold = open(gold_path).read().split("\n")[:-1]
pred = open(pred_path).read().split("\n")[:-1]
return gold, pred
def single_task_results(args):
task = args.task
tweeteval_result = -1
results = {}
try:
gold, pred = load_gold_pred(args)
results = classification_report(gold, pred, output_dict=True)
# Emoji (Macro f1)
if 'emoji' in task:
tweeteval_result = results['macro avg']['f1-score']
# Emotion (Macro f1)
elif 'emotion' in task:
tweeteval_result = results['macro avg']['f1-score']
# Hate (Macro f1)
elif 'hate' in task:
tweeteval_result = results['macro avg']['f1-score']
# Irony (Irony class f1)
elif 'irony' in task:
tweeteval_result = results['1']['f1-score']
# Offensive (Macro f1)
elif 'offensive' in task:
tweeteval_result = results['macro avg']['f1-score']
# Sentiment (Macro Recall)
elif 'sentiment' in task:
tweeteval_result = results['macro avg']['recall']
# Stance (Macro F1 of 'favor' and 'against' classes)
elif 'stance' in task:
f1_against = results['1']['f1-score']
f1_favor = results['2']['f1-score']
tweeteval_result = (f1_against+f1_favor) / 2
except Exception as ex:
print(f"Issues with task {task}: {ex}")
return tweeteval_result, results
def is_all_good(all_tweeteval_results):
return all([r != -1 for r in all_tweeteval_results.values()])
if __name__=="__main__":
parser = argparse.ArgumentParser(description='TweetEval evaluation script.')
parser.add_argument('--tweeteval_path', default="./datasets/", type=str, help='Path to TweetEval datasets')
parser.add_argument('--predictions_path', default="./predictions/", type=str, help='Path to predictions files')
parser.add_argument('--task', default="", type=str, help='Indicate this parameter to get single task detailed results')
args = parser.parse_args()
if args.task == "":
all_tweeteval_results = {}
# Results for each task
for t in TASKS:
args.task = t
all_tweeteval_results[t], _ = single_task_results(args)
# Print results (score=-1 if some results are missing)
print(f"{'-'*30}")
if is_all_good(all_tweeteval_results):
tweeteval_final_score = sum(all_tweeteval_results.values())/len(all_tweeteval_results.values())
else:
tweeteval_final_score = -1
for t in TASKS:
# Each score
print(f"{t}: {all_tweeteval_results[t]}")
# Final score
print(f"{'-'*30}\nTweetEval Score: {tweeteval_final_score}")
else:
# Detailed results of one single task (--task parameter)
tweeteval_resut, results = single_task_results(args)
for k in results:
print(k, results[k])
print(f"{'-'*30}\nTweetEval Score ({args.task}): {tweeteval_resut}")