Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 622. Design Circular Queue #622

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 622. Design Circular Queue #622

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Your implementation should support following operations:

  • MyCircularQueue(k): Constructor, set the size of the queue to be k.
  • Front: Get the front item from the queue. If the queue is empty, return -1.
  • Rear: Get the last item from the queue. If the queue is empty, return -1.
  • enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
  • deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
  • isEmpty(): Checks whether the circular queue is empty or not.
  • isFull(): Checks whether the circular queue is full or not.

 

Example:

MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1);  // return true
circularQueue.enQueue(2);  // return true
circularQueue.enQueue(3);  // return true
circularQueue.enQueue(4);  // return false, the queue is full
circularQueue.Rear();  // return 3
circularQueue.isFull();  // return true
circularQueue.deQueue();  // return true
circularQueue.enQueue(4);  // return true
circularQueue.Rear();  // return 4

 

Note:

  • All values will be in the range of [0, 1000].
  • The number of operations will be in the range of [1, 1000].
  • Please do not use the built-in Queue library.

 

这道题让我们设计一个环形的队列,说是不能使用内置的 queue 类,并且让我们实现一系列的成员函数,如进队,出队,取首尾元素,以及判空,判满等等。那么博主最先想到的就是用一个数组 data 来实现,并且用一个变量 size 来保存我们的环形队列的大小。先来实现最简单的判空和判满函数吧,判空就是判断 data 数组是否为空,判满就是看 data 数组的大小是否等于 size。然后是取首尾元素,需要先对数组判空,然后取首尾元素即可。进队列函数先要判满,然后加入 data 数组,出队列函数,先要判空,然后去掉数组的首元素即可,参见代码如下:

 

解法一:

class MyCircularQueue {
public:
    MyCircularQueue(int k) {
        size = k;
    }
    bool enQueue(int value) {
        if (isFull()) return false;
        data.push_back(value);
        return true;
    }
    bool deQueue() {
        if (isEmpty()) return false;
        data.erase(data.begin());
        return true;
    }
    int Front() {
        if (isEmpty()) return -1;
        return data.front();
    }
    int Rear() {
        if (isEmpty()) return -1;
        return data.back();
    }
    bool isEmpty() {
        return data.empty();
    }
    bool isFull() {
        return data.size() >= size;
    }
    
private:
    vector<int> data;
    int size;
};

 

做完上面的方法有没有一种感觉,这跟环形 Circular 有毛线关系,还有题目要求中的第二段话里的“我们可以使用队列前面的空间”,完全没有用到啊。其实上面的解法并不是本题真正想要考察的内容,我们要用上环形 Circular 的性质,之前我们貌似应该做过环形数组的题目吧,提到环形数组,博主最先想到的就是坐标加1,再对数组长度取余。这是数组能够环形的关键,那么这里也一样,我们除了使用 size 来记录环形队列的最大长度之外,还要使用三个变量,head,tail,cnt,分别来记录队首位置,队尾位置,和当前队列中数字的个数,这里我们将head初始化为 0,tail初始化为 k-1,head 是指向数组范围内的起始位置,tail 指向数组范围内的结束位置。那么在 Front() 函数,由于我们要返回起始位置的数字,为了不越界,进行环形走位,还要对 size 取余,于是就变成了 head % size,同理,对于 Rear() 函数,我们要返回结束位置的数字,为了不越界,并且环形走位,tail 要先加上size,再对 size 取余,于是就变成了 (tail+size) % size。

还是从简单的做起,判空就看当前个数 cnt 是否为0,判满就看当前个数 cnt 是否等于 size。接下来取首尾元素,先进行判空,然后根据 head 和tail 取即可,记得使用上循环数组的性质,要对 size 取余。再来看进队列函数,先进行判满,tail 要移动到下一位,为了避免越界,我们使用环形数组的经典操作,加1之后对长度取余,然后将新的数字加到当前的tail位置,cnt 再自增1即可。同样,出队列函数先进行判空,队首位置 head 要向后移动一位,同样进行加1之后对长度取余的操作,到这里就可以了,不用真正的去删除数字,因为 head 和 tail 限定了我们的当前队列的范围,然后 cnt 自减1,参见代码如下:

 

解法二:

class MyCircularQueue {
public:
    MyCircularQueue(int k) {
        size = k; head = k - 1; tail = 0; cnt = 0;
        data.resize(k);
    }
    bool enQueue(int value) {
        if (isFull()) return false;
        data[tail] = value;
        tail = (tail + 1) % size;
        ++cnt;
        return true;
    }
    bool deQueue() {
        if (isEmpty()) return false;
        head = (head + 1) % size;
        --cnt;
        return true;
    }
    int Front() {
        return isEmpty() ? -1 : data[(head + 1) % size];
    }
    int Rear() {
        return isEmpty() ? -1 : data[(tail - 1 + size) % size];
    }
    bool isEmpty() {
        return cnt == 0;
    }
    bool isFull() {
        return cnt == size;
    }
    
private:
    vector<int> data;
    int size, cnt, head, tail;
};

 

论坛上还见到了使用链表来做的解法,由于博主比较抵触在解法中新建class,所以这里就不贴了,可以参见这个帖子

 

类似题目:

Design Circular Deque

 

参考资料:

https://leetcode.com/problems/design-circular-queue/

https://leetcode.com/problems/design-circular-queue/discuss/149420/Concise-Java-using-array

https://leetcode.com/problems/design-circular-queue/discuss/162759/JAVA-Pass-All-Test-Cases-100-O(1)

 

LeetCode All in One 题目讲解汇总(持续更新中...) 

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant