-
Notifications
You must be signed in to change notification settings - Fork 63
/
synths.lib
321 lines (291 loc) · 11.1 KB
/
synths.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//################################### synths.lib ##########################################
// This library contains a collection of synthesizers. Its official prefix is `sy`.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/synths.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("maths.lib");
ba = library("basics.lib");
en = library("envelopes.lib");
fi = library("filters.lib");
os = library("oscillators.lib");
no = library("noises.lib");
declare name "Faust Synthesizer Library";
declare version "1.1.0";
//-----------------------------------`(sy.)popFilterDrum`--------------------------------------
// A simple percussion instrument based on a "popped" resonant bandpass filter.
// `popFilterDrum` is a standard Faust function.
//
// #### Usage
//
// ```
// popFilterDrum(freq,q,gate) : _
// ```
//
// Where:
//
// * `freq`: the resonance frequency of the instrument in Hz
// * `q`: the q of the res filter (typically, 5 is a good value)
// * `gate`: the trigger signal (0 or 1)
//----------------------------------------------------------------------------------------
declare popFilterDrum author "Romain Michon";
popFilterDrum(freq,q,gate) = en.ar(0.001,0.001,gate)*no.noise : fi.resonbp(freq,q,1);
//---------------------------------------`(sy.)dubDub`-----------------------------------------
// A simple synth based on a sawtooth wave filtered by a resonant lowpass.
// `dubDub` is a standard Faust function.
//
// #### Usage
//
// ```
// dubDub(freq,ctFreq,q,gate) : _
// ```
//
// Where:
//
// * `freq`: frequency of the sawtooth in Hz
// * `ctFreq`: cutoff frequency of the filter
// * `q`: Q of the filter
// * `gate`: the trigger signal (0 or 1)
//----------------------------------------------------------------------------------------
declare dubDub author "Romain Michon";
dubDub(freq,ctFreq,q,gate) = os.sawtooth(freq)*gainEnvelope : fi.resonlp(ctFreq,q,1)
with {
maxGain = 0.5;
gainEnvelope = en.smoothEnvelope(0.01,gate)*maxGain;
};
//-----------------------------------`(sy.)sawTrombone`----------------------------------------
// A simple trombone based on a lowpassed sawtooth wave.
// `sawTrombone` is a standard Faust function.
//
// #### Usage
//
// ```
// sawTrombone(freq,gain,gate) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
// * `gain`: the gain (0-1)
// * `gate`: the gate (0 or 1)
//----------------------------------------------------------------------------------------
declare sawTrombone author "Romain Michon";
sawTrombone(freq,gain,gate) = os.sawtooth(freq)*gainEnvelope : fi.lowpass(3,cutoff)
with {
// controls both the gain of the instrument and the lowpass frequency
gainEnvelope = en.smoothEnvelope(0.01,gate)*gain;
cutoff = gainEnvelope*5000+50;
};
//-----------------------------------`(sy.)combString`-----------------------------------------
// Simplest string physical model ever based on a comb filter.
// `combString` is a standard Faust function.
//
// #### Usage
//
// ```
// combString(freq,res,gate) : _
// ```
//
// Where:
//
// * `freq`: the frequency of the string in Hz
// * `res`: string T60 (resonance time) in second
// * `gate`: trigger signal (0 or 1)
//----------------------------------------------------------------------------------------
declare combString author "Romain Michon";
combString(freq,res,gate) = excitation : fi.fb_fcomb(maxDel,N,b0,aN)
with {
maxDel = 1024;
N = ma.SR/freq;
b0 = 1;
aN = ba.tau2pole(res*0.001)*-1;
excitation = no.noise*en.ar(0.001,0.001,gate);
};
//-----------------------------------`(sy.)additiveDrum`---------------------------------------
// A simple drum using additive synthesis.
// `additiveDrum` is a standard Faust function.
//
// #### Usage
//
// ```
// additiveDrum(freq,freqRatio,gain,harmDec,att,rel,gate) : _
// ```
//
// Where:
//
// * `freq`: the resonance frequency of the drum in Hz
// * `freqRatio`: a list of ratio to choose the frequency of the mode in
// function of `freq` e.g.(1 1.2 1.5 ...). The first element should always
// be one (fundamental).
// * `gain`: the gain of each mode as a list (1 0.9 0.8 ...). The first element
// is the gain of the fundamental.
// * `harmDec`: harmonic decay ratio (0-1): configure the speed at which
// higher modes decay compare to lower modes.
// * `att`: attack duration in second
// * `rel`: release duration in second
// * `gate`: trigger signal (0 or 1)
//----------------------------------------------------------------------------------------
declare additiveDrum author "Romain Michon";
additiveDrum(freq,freqRatio,gain,harmDec,att,rel,gate) = par(i,N,os.osc(modeFreq(i))*gainEnvelope(i)) :> _
with {
N = ba.count(freqRatio);
modeFreq(i) = freq*ba.take(i+1,freqRatio);
modeGain(i) = ba.take(i+1,gain);
gainEnvelope(i) = modeGain(i)*en.ar(att,rel*(1-(harmDec*(i/N))),gate);
};
//-----------------------------------`(sy.)fm`---------------------------------------
// An FM synthesizer with an arbitrary number of modulators connected as a sequence.
// `fm` is a standard Faust function.
//
// #### Usage
//
// ```
// freqs = (300,400,...);
// indices = (20,...);
// fm(freqs,indices) : _
// ```
//
// Where:
//
// * `freqs`: a list of frequencies where the first one is the frequency of the carrier
// and the others, the frequency of the modulator(s)
// * `indices`: the indices of modulation (Nfreqs-1)
//----------------------------------------------------------------------------------------
declare fm author "Romain Michon";
fm(freqs,indices) = seq(i,N,fmBlock(i))
with {
N = ba.count(freqs);
freq(i) = ba.take(N-i,freqs);
gain(i) = ba.take(N-i,indices);
fmBlock(0) = freq(0) : os.osc;
fmBlock(i) = *(gain(i))+freq(i) : os.osc;
};
//===============================Drum Synthesis===================================
// Drum Synthesis ported in Faust from a version written in [Elementary](https://www.elementary.audio/)
// and JavaScript by Nick Thompson.
//
// #### Reference
//
// <https://www.nickwritesablog.com/drum-synthesis-in-javascript/>
//========================================================================================
//-----------------------------------`(sy.)kick`---------------------------------------
// Kick drum synthesis via a pitched sine sweep.
//
// #### Usage
//
// ```
// kick(pitch, click, attack, decay, drive, gate) : _
// ```
//
// Where:
//
// * `pitch`: the base frequency of the kick drum in Hz
// * `click`: the speed of the pitch envelope, tuned for [0.005s, 1s]
// * `attack`: attack time in seconds, tuned for [0.005s, 0.4s]
// * `decay`: decay time in seconds, tuned for [0.005s, 4.0s]
// * `drive`: a gain multiplier going into the saturator. Tuned for [1, 10]
// * `gate`: the gate which triggers the amp envelope
//
// #### Reference
//
// <https://github.com/nick-thompson/drumsynth/blob/master/kick.js>
//-------------------------------------------------------------------------------------
kick(pitch, click, attack, decay, drive, gate) = out
with {
env = en.adsr(attack, decay, 0.0, 0.1, gate);
pitchenv = en.adsr(0.005, click, 0.0, 0.1, gate);
clean = env * os.osc((1 + pitchenv * 4) * pitch);
out = ma.tanh(clean * drive);
};
//-----------------------------------`(sy.)clap`---------------------------------------
// Clap synthesis via filtered white noise.
//
// #### Usage
//
// ```
// clap(tone, attack, decay, gate) : _
// ```
//
// Where:
//
// * `tone`: bandpass filter cutoff frequency, tuned for [400Hz, 3500Hz]
// * `attack`: attack time in seconds, tuned for [0s, 0.2s]
// * `decay`: decay time in seconds, tuned for [0s, 4.0s]
// * `gate`: the gate which triggers the amp envelope
//
// #### Reference
//
// <https://github.com/nick-thompson/drumsynth/blob/master/clap.js>
//-------------------------------------------------------------------------------------
clap(tone, attack, decay, gate) = out
with {
e1 = en.adsr(0.035 + attack, 0.06 + decay, 0.0, 0.1, gate);
e2 = en.adsr(0.025 + attack, 0.05 + decay, 0.0, 0.1, gate);
e3 = en.adsr(0.015 + attack, 0.04 + decay, 0.0, 0.1, gate);
e4 = en.adsr(0.005 + attack, 0.02 + decay, 0.0, 0.1, gate);
out = ma.tanh(((e1 + e2 + e3 + e4) * no.noise) : fi.resonlp(tone, 1.214, 1));
};
//-----------------------------------`(sy.)hat`---------------------------------------
// Hi hat drum synthesis via phase modulation.
//
// #### Usage
//
// ```
// hat(pitch, tone, attack, decay, gate): _
// ```
//
// Where:
//
// * `pitch`: base frequency in the range [317Hz, 3170Hz]
// * `tone`: bandpass filter cutoff frequency, tuned for [800Hz, 18kHz]
// * `attack`: attack time in seconds, tuned for [0.005s, 0.2s]
// * `decay`: decay time in seconds, tuned for [0.005s, 4.0s]
// * `gate`: the gate which triggers the amp envelope
//
// #### Reference
//
// <https://github.com/nick-thompson/drumsynth/blob/master/hat.js>
//-------------------------------------------------------------------------------------
hat(pitch, tone, attack, decay, gate) = out
with {
m2 = no.noise;
m1 = cycle(2 * pitch, 2 * m2);
m0 = cycle(pitch, 2 * m1);
f = m0 : fi.resonlp(tone, 1.214, 1);
env = en.adsr(attack, decay, 0.0, 0.1, gate);
out = f * env;
cycle(freq, offset) = sin(2 * ma.PI * p)
with {
t = phasor(freq) + offset;
p = t - floor(t);
phasor(f) = f/ma.SR : (+ : decimalpart) ~ _ with { decimalpart(x) = x-int(x); };
};
};