-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathmemchunk.go
743 lines (609 loc) · 16.7 KB
/
memchunk.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
package chunkenc
import (
"bufio"
"bytes"
"context"
"encoding/binary"
"fmt"
"hash"
"hash/crc32"
"io"
"time"
"github.com/cortexproject/cortex/pkg/util"
"github.com/go-kit/kit/log/level"
"github.com/pkg/errors"
"github.com/grafana/loki/pkg/iter"
"github.com/grafana/loki/pkg/logproto"
"github.com/grafana/loki/pkg/logql"
"github.com/grafana/loki/pkg/logql/stats"
)
const (
blocksPerChunk = 10
maxLineLength = 1024 * 1024 * 1024
)
var (
magicNumber = uint32(0x12EE56A)
chunkFormatV1 = byte(1)
chunkFormatV2 = byte(2)
)
// The table gets initialized with sync.Once but may still cause a race
// with any other use of the crc32 package anywhere. Thus we initialize it
// before.
var castagnoliTable *crc32.Table
func init() {
castagnoliTable = crc32.MakeTable(crc32.Castagnoli)
}
// newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the
// polynomial may be easily changed in one location at a later time, if necessary.
func newCRC32() hash.Hash32 {
return crc32.New(castagnoliTable)
}
// MemChunk implements compressed log chunks.
type MemChunk struct {
// The number of uncompressed bytes per block.
blockSize int
// Target size in compressed bytes
targetSize int
// The finished blocks.
blocks []block
// The compressed size of all the blocks
cutBlockSize int
// Current in-mem block being appended to.
head *headBlock
// the chunk format default to v2
format byte
encoding Encoding
readers ReaderPool
writers WriterPool
}
type block struct {
// This is compressed bytes.
b []byte
numEntries int
mint, maxt int64
offset int // The offset of the block in the chunk.
uncompressedSize int // Total uncompressed size in bytes when the chunk is cut.
readers ReaderPool
}
// This block holds the un-compressed entries. Once it has enough data, this is
// emptied into a block with only compressed entries.
type headBlock struct {
// This is the list of raw entries.
entries []entry
size int // size of uncompressed bytes.
mint, maxt int64
}
func (hb *headBlock) isEmpty() bool {
return len(hb.entries) == 0
}
func (hb *headBlock) append(ts int64, line string) error {
if !hb.isEmpty() && hb.maxt > ts {
return ErrOutOfOrder
}
hb.entries = append(hb.entries, entry{ts, line})
if hb.mint == 0 || hb.mint > ts {
hb.mint = ts
}
hb.maxt = ts
hb.size += len(line)
return nil
}
func (hb *headBlock) serialise(pool WriterPool) ([]byte, error) {
inBuf := serializeBytesBufferPool.Get().(*bytes.Buffer)
defer func() {
inBuf.Reset()
serializeBytesBufferPool.Put(inBuf)
}()
outBuf := &bytes.Buffer{}
encBuf := make([]byte, binary.MaxVarintLen64)
compressedWriter := pool.GetWriter(outBuf)
defer pool.PutWriter(compressedWriter)
for _, logEntry := range hb.entries {
n := binary.PutVarint(encBuf, logEntry.t)
inBuf.Write(encBuf[:n])
n = binary.PutUvarint(encBuf, uint64(len(logEntry.s)))
inBuf.Write(encBuf[:n])
inBuf.WriteString(logEntry.s)
}
if _, err := compressedWriter.Write(inBuf.Bytes()); err != nil {
return nil, errors.Wrap(err, "appending entry")
}
if err := compressedWriter.Close(); err != nil {
return nil, errors.Wrap(err, "flushing pending compress buffer")
}
return outBuf.Bytes(), nil
}
type entry struct {
t int64
s string
}
// NewMemChunk returns a new in-mem chunk.
func NewMemChunk(enc Encoding, blockSize, targetSize int) *MemChunk {
c := &MemChunk{
blockSize: blockSize, // The blockSize in bytes.
targetSize: targetSize, // Desired chunk size in compressed bytes
blocks: []block{},
head: &headBlock{},
format: chunkFormatV2,
encoding: enc,
writers: getWriterPool(enc),
readers: getReaderPool(enc),
}
return c
}
// NewByteChunk returns a MemChunk on the passed bytes.
func NewByteChunk(b []byte, blockSize, targetSize int) (*MemChunk, error) {
bc := &MemChunk{
head: &headBlock{}, // Dummy, empty headblock.
blockSize: blockSize,
targetSize: targetSize,
}
db := decbuf{b: b}
// Verify the header.
m, version := db.be32(), db.byte()
if db.err() != nil {
return nil, errors.Wrap(db.err(), "verifying header")
}
if m != magicNumber {
return nil, errors.Errorf("invalid magic number %x", m)
}
bc.format = version
switch version {
case chunkFormatV1:
bc.readers, bc.writers = &Gzip, &Gzip
case chunkFormatV2:
// format v2 has a byte for block encoding.
enc := Encoding(db.byte())
if db.err() != nil {
return nil, errors.Wrap(db.err(), "verifying encoding")
}
bc.encoding = enc
bc.readers, bc.writers = getReaderPool(enc), getWriterPool(enc)
default:
return nil, errors.Errorf("invalid version %d", version)
}
metasOffset := binary.BigEndian.Uint64(b[len(b)-8:])
mb := b[metasOffset : len(b)-(8+4)] // storing the metasOffset + checksum of meta
db = decbuf{b: mb}
expCRC := binary.BigEndian.Uint32(b[len(b)-(8+4):])
if expCRC != db.crc32() {
return nil, ErrInvalidChecksum
}
// Read the number of blocks.
num := db.uvarint()
bc.blocks = make([]block, 0, num)
for i := 0; i < num; i++ {
blk := block{
readers: bc.readers,
}
// Read #entries.
blk.numEntries = db.uvarint()
// Read mint, maxt.
blk.mint = db.varint64()
blk.maxt = db.varint64()
// Read offset and length.
blk.offset = db.uvarint()
l := db.uvarint()
blk.b = b[blk.offset : blk.offset+l]
// Verify checksums.
expCRC := binary.BigEndian.Uint32(b[blk.offset+l:])
if expCRC != crc32.Checksum(blk.b, castagnoliTable) {
level.Error(util.Logger).Log("msg", "Checksum does not match for a block in chunk, this block will be skipped", "err", ErrInvalidChecksum)
continue
}
bc.blocks = append(bc.blocks, blk)
// Update the counter used to track the size of cut blocks.
bc.cutBlockSize += len(blk.b)
if db.err() != nil {
return nil, errors.Wrap(db.err(), "decoding block meta")
}
}
return bc, nil
}
// Bytes implements Chunk.
func (c *MemChunk) Bytes() ([]byte, error) {
if c.head != nil {
// When generating the bytes, we need to flush the data held in-buffer.
if err := c.cut(); err != nil {
return nil, err
}
}
crc32Hash := newCRC32()
buf := bytes.NewBuffer(nil)
offset := 0
eb := encbuf{b: make([]byte, 0, 1<<10)}
// Write the header (magicNum + version).
eb.putBE32(magicNumber)
eb.putByte(c.format)
if c.format == chunkFormatV2 {
// chunk format v2 has a byte for encoding.
eb.putByte(byte(c.encoding))
}
n, err := buf.Write(eb.get())
if err != nil {
return buf.Bytes(), errors.Wrap(err, "write blockMeta #entries")
}
offset += n
// Write Blocks.
for i, b := range c.blocks {
c.blocks[i].offset = offset
eb.reset()
eb.putBytes(b.b)
eb.putHash(crc32Hash)
n, err := buf.Write(eb.get())
if err != nil {
return buf.Bytes(), errors.Wrap(err, "write block")
}
offset += n
}
metasOffset := offset
// Write the number of blocks.
eb.reset()
eb.putUvarint(len(c.blocks))
// Write BlockMetas.
for _, b := range c.blocks {
eb.putUvarint(b.numEntries)
eb.putVarint64(b.mint)
eb.putVarint64(b.maxt)
eb.putUvarint(b.offset)
eb.putUvarint(len(b.b))
}
eb.putHash(crc32Hash)
_, err = buf.Write(eb.get())
if err != nil {
return buf.Bytes(), errors.Wrap(err, "write block metas")
}
// Write the metasOffset.
eb.reset()
eb.putBE64int(metasOffset)
_, err = buf.Write(eb.get())
if err != nil {
return buf.Bytes(), errors.Wrap(err, "write metasOffset")
}
return buf.Bytes(), nil
}
// Encoding implements Chunk.
func (c *MemChunk) Encoding() Encoding {
return c.encoding
}
// Size implements Chunk.
func (c *MemChunk) Size() int {
ne := 0
for _, blk := range c.blocks {
ne += blk.numEntries
}
if !c.head.isEmpty() {
ne += len(c.head.entries)
}
return ne
}
// BlockCount implements Chunk.
func (c *MemChunk) BlockCount() int {
return len(c.blocks)
}
// SpaceFor implements Chunk.
func (c *MemChunk) SpaceFor(e *logproto.Entry) bool {
if c.targetSize > 0 {
// This is looking to see if the uncompressed lines will fit which is not
// a great check, but it will guarantee we are always under the target size
newHBSize := c.head.size + len(e.Line)
return (c.cutBlockSize + newHBSize) < c.targetSize
}
// if targetSize is not defined, default to the original behavior of fixed blocks per chunk
return len(c.blocks) < blocksPerChunk
}
// UncompressedSize implements Chunk.
func (c *MemChunk) UncompressedSize() int {
size := 0
if !c.head.isEmpty() {
size += c.head.size
}
for _, b := range c.blocks {
size += b.uncompressedSize
}
return size
}
// CompressedSize implements Chunk
func (c *MemChunk) CompressedSize() int {
size := 0
// Better to account for any uncompressed data than ignore it even though this isn't accurate.
if !c.head.isEmpty() {
size += c.head.size
}
size += c.cutBlockSize
return size
}
// Utilization implements Chunk.
func (c *MemChunk) Utilization() float64 {
if c.targetSize != 0 {
return float64(c.CompressedSize()) / float64(c.targetSize)
}
size := c.UncompressedSize()
return float64(size) / float64(blocksPerChunk*c.blockSize)
}
// Append implements Chunk.
func (c *MemChunk) Append(entry *logproto.Entry) error {
entryTimestamp := entry.Timestamp.UnixNano()
// If the head block is empty but there are cut blocks, we have to make
// sure the new entry is not out of order compared to the previous block
if c.head.isEmpty() && len(c.blocks) > 0 && c.blocks[len(c.blocks)-1].maxt > entryTimestamp {
return ErrOutOfOrder
}
if err := c.head.append(entryTimestamp, entry.Line); err != nil {
return err
}
if c.head.size >= c.blockSize {
return c.cut()
}
return nil
}
// Close implements Chunk.
// TODO: Fix this to check edge cases.
func (c *MemChunk) Close() error {
return c.cut()
}
// cut a new block and add it to finished blocks.
func (c *MemChunk) cut() error {
if c.head.isEmpty() {
return nil
}
b, err := c.head.serialise(c.writers)
if err != nil {
return err
}
c.blocks = append(c.blocks, block{
readers: c.readers,
b: b,
numEntries: len(c.head.entries),
mint: c.head.mint,
maxt: c.head.maxt,
uncompressedSize: c.head.size,
})
c.cutBlockSize += len(b)
c.head.entries = c.head.entries[:0]
c.head.mint = 0 // Will be set on first append.
c.head.size = 0
return nil
}
// Bounds implements Chunk.
func (c *MemChunk) Bounds() (fromT, toT time.Time) {
var from, to int64
if len(c.blocks) > 0 {
from = c.blocks[0].mint
to = c.blocks[len(c.blocks)-1].maxt
}
if !c.head.isEmpty() {
if from == 0 || from > c.head.mint {
from = c.head.mint
}
if to < c.head.maxt {
to = c.head.maxt
}
}
return time.Unix(0, from), time.Unix(0, to)
}
// Iterator implements Chunk.
func (c *MemChunk) Iterator(ctx context.Context, mintT, maxtT time.Time, direction logproto.Direction, filter logql.LineFilter) (iter.EntryIterator, error) {
mint, maxt := mintT.UnixNano(), maxtT.UnixNano()
its := make([]iter.EntryIterator, 0, len(c.blocks)+1)
for _, b := range c.blocks {
if maxt < b.mint || b.maxt < mint {
continue
}
its = append(its, b.Iterator(ctx, filter))
}
if !c.head.isEmpty() {
its = append(its, c.head.iterator(ctx, mint, maxt, filter))
}
iterForward := iter.NewTimeRangedIterator(
iter.NewNonOverlappingIterator(its, ""),
time.Unix(0, mint),
time.Unix(0, maxt),
)
if direction == logproto.FORWARD {
return iterForward, nil
}
return iter.NewEntryReversedIter(iterForward)
}
// Blocks implements Chunk
func (c *MemChunk) Blocks(mintT, maxtT time.Time) []Block {
mint, maxt := mintT.UnixNano(), maxtT.UnixNano()
blocks := make([]Block, 0, len(c.blocks))
for _, b := range c.blocks {
if maxt > b.mint && b.maxt > mint {
blocks = append(blocks, b)
}
}
return blocks
}
func (b block) Iterator(ctx context.Context, filter logql.LineFilter) iter.EntryIterator {
if len(b.b) == 0 {
return emptyIterator
}
return newBufferedIterator(ctx, b.readers, b.b, filter)
}
func (b block) Offset() int {
return b.offset
}
func (b block) Entries() int {
return b.numEntries
}
func (b block) MinTime() int64 {
return b.mint
}
func (b block) MaxTime() int64 {
return b.maxt
}
func (hb *headBlock) iterator(ctx context.Context, mint, maxt int64, filter logql.LineFilter) iter.EntryIterator {
if hb.isEmpty() || (maxt < hb.mint || hb.maxt < mint) {
return emptyIterator
}
chunkStats := stats.GetChunkData(ctx)
// We are doing a copy everytime, this is because b.entries could change completely,
// the alternate would be that we allocate a new b.entries everytime we cut a block,
// but the tradeoff is that queries to near-realtime data would be much lower than
// cutting of blocks.
chunkStats.HeadChunkLines += int64(len(hb.entries))
entries := make([]entry, 0, len(hb.entries))
for _, e := range hb.entries {
chunkStats.HeadChunkBytes += int64(len(e.s))
if filter == nil || filter.Filter([]byte(e.s)) {
entries = append(entries, e)
}
}
if len(entries) == 0 {
return emptyIterator
}
return &listIterator{
entries: entries,
cur: -1,
}
}
var emptyIterator = &listIterator{}
type listIterator struct {
entries []entry
cur int
}
func (li *listIterator) Next() bool {
li.cur++
return li.cur < len(li.entries)
}
func (li *listIterator) Entry() logproto.Entry {
if li.cur < 0 || li.cur >= len(li.entries) {
return logproto.Entry{}
}
cur := li.entries[li.cur]
return logproto.Entry{
Timestamp: time.Unix(0, cur.t),
Line: cur.s,
}
}
func (li *listIterator) Error() error { return nil }
func (li *listIterator) Close() error { return nil }
func (li *listIterator) Labels() string { return "" }
type bufferedIterator struct {
origBytes []byte
stats *stats.ChunkData
bufReader *bufio.Reader
reader io.Reader
pool ReaderPool
cur logproto.Entry
err error
buf []byte // The buffer for a single entry.
decBuf []byte // The buffer for decoding the lengths.
closed bool
filter logql.LineFilter
}
func newBufferedIterator(ctx context.Context, pool ReaderPool, b []byte, filter logql.LineFilter) *bufferedIterator {
chunkStats := stats.GetChunkData(ctx)
chunkStats.CompressedBytes += int64(len(b))
return &bufferedIterator{
stats: chunkStats,
origBytes: b,
reader: nil, // will be initialized later
bufReader: nil, // will be initialized later
pool: pool,
filter: filter,
decBuf: make([]byte, binary.MaxVarintLen64),
}
}
func (si *bufferedIterator) Next() bool {
if !si.closed && si.reader == nil {
// initialize reader now, hopefully reusing one of the previous readers
si.reader = si.pool.GetReader(bytes.NewBuffer(si.origBytes))
si.bufReader = BufReaderPool.Get(si.reader)
}
for {
ts, line, ok := si.moveNext()
if !ok {
si.Close()
return false
}
// we decode always the line length and ts as varint
si.stats.DecompressedBytes += int64(len(line)) + 2*binary.MaxVarintLen64
si.stats.DecompressedLines++
if si.filter != nil && !si.filter.Filter(line) {
continue
}
si.cur.Line = string(line)
si.cur.Timestamp = time.Unix(0, ts)
return true
}
}
// moveNext moves the buffer to the next entry
func (si *bufferedIterator) moveNext() (int64, []byte, bool) {
ts, err := binary.ReadVarint(si.bufReader)
if err != nil {
if err != io.EOF {
si.err = err
}
return 0, nil, false
}
l, err := binary.ReadUvarint(si.bufReader)
if err != nil {
if err != io.EOF {
si.err = err
return 0, nil, false
}
}
lineSize := int(l)
if lineSize >= maxLineLength {
si.err = fmt.Errorf("line too long %d, maximum %d", lineSize, maxLineLength)
return 0, nil, false
}
// If the buffer is not yet initialize or too small, we get a new one.
if si.buf == nil || lineSize > cap(si.buf) {
// in case of a replacement we replace back the buffer in the pool
if si.buf != nil {
BytesBufferPool.Put(si.buf)
}
si.buf = BytesBufferPool.Get(lineSize).([]byte)
if lineSize > cap(si.buf) {
si.err = fmt.Errorf("could not get a line buffer of size %d, actual %d", lineSize, cap(si.buf))
return 0, nil, false
}
}
// Then process reading the line.
n, err := si.bufReader.Read(si.buf[:lineSize])
if err != nil && err != io.EOF {
si.err = err
return 0, nil, false
}
for n < lineSize {
r, err := si.bufReader.Read(si.buf[n:lineSize])
if err != nil {
si.err = err
return 0, nil, false
}
n += r
}
return ts, si.buf[:lineSize], true
}
func (si *bufferedIterator) Entry() logproto.Entry {
return si.cur
}
func (si *bufferedIterator) Error() error { return si.err }
func (si *bufferedIterator) Close() error {
if !si.closed {
si.closed = true
si.close()
}
return si.err
}
func (si *bufferedIterator) close() {
if si.reader != nil {
si.pool.PutReader(si.reader)
si.reader = nil
}
if si.bufReader != nil {
BufReaderPool.Put(si.bufReader)
si.bufReader = nil
}
if si.buf != nil {
BytesBufferPool.Put(si.buf)
si.buf = nil
}
si.origBytes = nil
si.decBuf = nil
}
func (si *bufferedIterator) Labels() string { return "" }