forked from martinpella/metacritic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
61 lines (51 loc) · 2.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np, pandas as pd
import matplotlib.pyplot as plt, seaborn as sns
import itertools
from scipy import sparse
from bisect import bisect_left
def plot_embeddings(red_term_doc, y_train, qty=1000):
svd_pos = red_term_doc[y_train == 1]
svd_neg = red_term_doc[y_train == 0]
plt.figure(figsize=(10, 10))
plt.scatter(svd_pos[:qty, 0], svd_pos[:qty, 1], alpha=0.5, marker='.', label='Positive')
plt.scatter(svd_neg[:qty, 0], svd_neg[:qty, 1], alpha=0.5, marker='.', label='Negative');
plt.legend();
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.figure(figsize=(8, 8))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
class lil2(sparse.lil_matrix):
def removecol(self,j):
if j < 0:
j += self.shape[1]
if j < 0 or j >= self.shape[1]:
raise IndexError('column index out of bounds')
rows = self.rows
data = self.data
for i in range(self.shape[0]):
pos = bisect_left(rows[i], j)
if pos == len(rows[i]):
continue
elif rows[i][pos] == j:
rows[i].pop(pos)
data[i].pop(pos)
if pos == len(rows[i]):
continue
for pos2 in range(pos,len(rows[i])):
rows[i][pos2] -= 1
self._shape = (self._shape[0],self._shape[1]-1)